Skip to content

Commit

Permalink
2025-01-10 nightly release (baae232)
Browse files Browse the repository at this point in the history
  • Loading branch information
pytorchbot committed Jan 10, 2025
1 parent 91a0eea commit f84ee47
Show file tree
Hide file tree
Showing 9 changed files with 21 additions and 12 deletions.
2 changes: 1 addition & 1 deletion .github/workflows/gpu_test.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ jobs:
run: python -m pip install --upgrade pip
- name: Install torch nightly
if: ${{ matrix.torch-version == 'nightly' }}
run: python -m pip install --pre torch torchvision torchao --index-url https://download.pytorch.org/whl/nightly/cu121
run: python -m pip install --pre torch torchvision torchao --index-url https://download.pytorch.org/whl/nightly/cu126
- name: Install torch stable
if: ${{ matrix.torch-version == 'stable' }}
run: python -m pip install torch torchvision torchao
Expand Down
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -170,7 +170,7 @@ pip install torchtune

```bash
# Install PyTorch, torchvision, torchao nightlies
pip install --pre --upgrade torch torchvision torchao --index-url https://download.pytorch.org/whl/nightly/cu121 # full options are cpu/cu118/cu121/cu124
pip install --pre --upgrade torch torchvision torchao --index-url https://download.pytorch.org/whl/nightly/cu126 # full options are cpu/cu118/cu121/cu124/cu126
pip install --pre --upgrade torchtune --extra-index-url https://download.pytorch.org/whl/nightly/cpu
```

Expand Down
2 changes: 1 addition & 1 deletion docs/source/install.rst
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ nightly versions with the following commands:
pip install torch torchvision torchao
# Or nightly install for latest features
pip install --pre torch torchvision torchao --index-url https://download.pytorch.org/whl/nightly/cu121 # full options are cpu/cu118/cu121/cu124
pip install --pre torch torchvision torchao --index-url https://download.pytorch.org/whl/nightly/cu126 # full options are cpu/cu118/cu121/cu124/cu126
Install via PyPI
Expand Down
7 changes: 5 additions & 2 deletions recipes/full_finetune_distributed.py
Original file line number Diff line number Diff line change
Expand Up @@ -766,7 +766,9 @@ def train(self) -> None:
if self._optimizer_in_bwd:
torch.distributed.all_reduce(num_tokens)
torch.distributed.all_reduce(running_loss)
current_loss = current_loss / num_tokens

# We multiply by world_size to undo FSDP2 gradient normalization.
current_loss = current_loss * (world_size / num_tokens)

current_loss.backward()

Expand All @@ -778,7 +780,8 @@ def train(self) -> None:
# This will ensure that the logged loss matches what we're optimizing
torch.distributed.all_reduce(running_loss)
# Manually scale the gradients from unnormalized loss by total # of tokens
training.scale_grads(self._model, 1 / num_tokens)
# We multiply by world_size to undo FSDP2 gradient normalization.
training.scale_grads(self._model, world_size / num_tokens)
if self._clip_grad_norm is not None:
grad_norm = torch.nn.utils.clip_grad_norm_(
self._model.parameters(),
Expand Down
4 changes: 2 additions & 2 deletions recipes/knowledge_distillation_distributed.py
Original file line number Diff line number Diff line change
Expand Up @@ -769,7 +769,6 @@ def save_checkpoint(self, epoch: int) -> None:
def _loss_step(
self, batch: Dict[str, torch.Tensor]
) -> (torch.Tensor, torch.Tensor):

# Both are shape [b, s]
tokens, labels = batch["tokens"], batch["labels"]

Expand Down Expand Up @@ -875,7 +874,8 @@ def train(self) -> None:
torch.distributed.all_reduce(running_class_loss)
torch.distributed.all_reduce(running_kd_loss)
# Manually scale the gradients from unnormalized loss by total # of tokens
training.scale_grads(self._model, 1 / num_tokens)
# We multiply by world_size to undo FSDP2 gradient normalization.
training.scale_grads(self._model, world_size / num_tokens)
class_loss_to_log = running_class_loss.item() / num_tokens
kd_loss_to_log = running_kd_loss.item() / num_tokens
self._optimizer.step()
Expand Down
3 changes: 2 additions & 1 deletion recipes/lora_finetune_distributed.py
Original file line number Diff line number Diff line change
Expand Up @@ -822,7 +822,8 @@ def train(self) -> None:
# This will ensure that the logged loss matches what we're optimizing
torch.distributed.all_reduce(running_loss)
# Manually scale the gradients from unnormalized loss by total # of tokens
training.scale_grads(self._model, 1 / num_tokens)
# We multiply by world_size to undo FSDP2 gradient normalization.
training.scale_grads(self._model, world_size / num_tokens)
if self._clip_grad_norm is not None:
grad_norm = torch.nn.utils.clip_grad_norm_(
self._model.parameters(),
Expand Down
3 changes: 2 additions & 1 deletion recipes/lora_finetune_distributed_multi_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -851,7 +851,8 @@ def train(self) -> None:
# This will ensure that the logged loss matches what we're optimizing
torch.distributed.all_reduce(running_loss)
# Manually scale the gradients from unnormalized loss by total # of tokens
training.scale_grads(self._model, 1 / num_tokens)
# We multiply by world_size to undo FSDP2 gradient normalization.
training.scale_grads(self._model, world_size / num_tokens)
if self._clip_grad_norm is not None:
grad_norm = torch.nn.utils.clip_grad_norm_(
self._model.parameters(),
Expand Down
7 changes: 5 additions & 2 deletions recipes/qat_distributed.py
Original file line number Diff line number Diff line change
Expand Up @@ -837,7 +837,9 @@ def train(self) -> None:
if self._optimizer_in_bwd:
torch.distributed.all_reduce(num_tokens)
torch.distributed.all_reduce(running_loss)
current_loss = current_loss / num_tokens

# We multiply by world_size to undo FSDP2 gradient normalization.
current_loss = current_loss * (world_size / num_tokens)

current_loss.backward()

Expand All @@ -849,7 +851,8 @@ def train(self) -> None:
# This will ensure that the logged loss matches what we're optimizing
torch.distributed.all_reduce(running_loss)
# Manually scale the gradients from unnormalized loss by total # of tokens
training.scale_grads(self._model, 1 / num_tokens)
# We multiply by world_size to undo FSDP2 gradient normalization.
training.scale_grads(self._model, world_size / num_tokens)
if self._clip_grad_norm is not None:
grad_norm = torch.nn.utils.clip_grad_norm_(
self._model.parameters(),
Expand Down
3 changes: 2 additions & 1 deletion recipes/qat_lora_finetune_distributed.py
Original file line number Diff line number Diff line change
Expand Up @@ -866,7 +866,8 @@ def train(self) -> None:
# This will ensure that the logged loss matches what we're optimizing
torch.distributed.all_reduce(running_loss)
# Manually scale the gradients from unnormalized loss by total # of tokens
training.scale_grads(self._model, 1 / num_tokens)
# We multiply by world_size to undo FSDP2 gradient normalization.
training.scale_grads(self._model, world_size / num_tokens)
if self._clip_grad_norm is not None:
grad_norm = torch.nn.utils.clip_grad_norm_(
self._model.parameters(),
Expand Down

0 comments on commit f84ee47

Please sign in to comment.