Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

qasm256 #675

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
96 changes: 96 additions & 0 deletions qasm256
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
qubit q[8]; // Declare an 8-qubit register
qudit d[4][3]; // Declare a 4-dimensional, 3-qudit system
bit[16] results; // Classical register for results
float[32] amplitudes; // Floating-point array for QAM encoding

include "qam_encoding.q256"; // QAM-like modulation gates
include "error_correction.q256"; // Error correction protocols
include "noise_modeling.q256"; // Noise mitigation tools

qam_gate(amp=0.707, phase=3.14159/4) q[0]; // Apply QAM-like encoding to q[0]
rz(phase=pi/3) q[1]; // Phase rotation gate
qudit_gate(dimension=4, op="superposition") d[0]; // Apply a qudit-specific gate

entangle q[0], q[1]; // Entangle q[0] and q[1]
send_entangled q[2], "node_1"; // Transmit q[2] to a remote node
receive_entangled q[3], "node_1"; // Receive an entangled qubit from node_1

measure q -> results; // Measure all qubits in q
measure_phase q[0] -> phase; // Measure the phase of q[0]

float amplitude = 0.8;
float phase = pi/4;

// Apply amplitude-phase encoding
qam_gate(amplitude, phase) q[0];

shor_encode q[0:8]; // Apply Shor encoding
surface_correct d[0]; // Apply surface code error correction

apply_noise(depolarizing=0.01) q[0:7]; // Add depolarizing noise
simulate_noise_channel(channel="amplitude_damping", strength=0.05) q;

initialize_qudit(dimension=5) d[0]; // Initialize a 5-dimensional qudit
apply_gate(d[0], "rotation", angle=pi/6); // Apply a rotation gate on d[0]


initialize_qudit(dimension=5) d[0]; // Initialize a 5-dimensional qudit
apply_gate(d[0], "rotation", angle=pi/6); // Apply a rotation gate on d[0]


entangle_network q[0], q[1], "node_2"; // Create a distributed entangled state
transmit_entangled q[2], "node_2"; // Transmit q[2] to node_2
receive_entangled q[3], "node_2"; // Receive an entangled state


qubit q[8];
float[256] amplitudes, phases;

// Initialize amplitude and phase arrays
for int i in [0:255] {
amplitudes[i] = random_uniform(0.0, 1.0);
phases[i] = random_uniform(0.0, 2*pi);
}


library error_correction {
function shor_encode(qubit[9] q) {
// Apply Shor encoding for fault tolerance
h q[0];
cx q[0], q[1];
cx q[0], q[2];
}
}


library qam_encoding {
function qam_gate(float amplitude, float phase, qubit q) {
// Apply amplitude and phase modulation
u3(2 * acos(amplitude), 0, 0) q;
rz(phase) q;
}
}

// At node_1
receive_entangled q[0], "node_1";
receive_entangled q[2], "node_1";

// Measure received qubits
measure q -> results;

// Entangle qubits
entangle q[0], q[1];
entangle q[2], q[3];

// Transmit entangled qubits
send_entangled q[0], "node_1";
send_entangled q[2], "node_1";

// Encode data into qubits
for int i in [0:255] {
let amp = amplitudes[i];
let phase = phases[i];
qam_gate(amp, phase) q[i % 8];
}