Skip to content

A python based toolbox for RPLAN dataset

Notifications You must be signed in to change notification settings

rickkk856/RPLAN-Toolbox

 
 

Repository files navigation

Small Modifications on RPLAN-ToolBox

Batch_plot.py --> convert the whole ./data folder into the ./output folder

From Black-outline to >> Vectorized Floorplan

0 0 (4)

  1. Notes on Batch Processing

Uncomment last lines of the Batch_plot.py to choose the output type Standard code: (just leave one #coment)

    plot_category(fp.category) # raw image
    #plot_boundary(data['boundary']) # vector boundary
    #plot_graph(data['boundary'],data['boxes'],data['types'],data['edges']) # node graph
    #plot_fp(data['boundary'], data['boxes_aligned'][order], data['types'][order]) # vector floorplan
    #plot_fp(data['boundary'], data['boxes_aligned'][order], data['types'][order],data['doors'],data['windows']) # vector floorplan with doors and windows
  1. For different output colors, edit ./rplan/decorate.py and ./rplan/plot.py with the desired RGB color values according to the room labels

Examples of different output colors with #raw image :

0 (3) 0 (6)

0 (5) 0 (2)

RPLAN-ToolBox - Original explanation from source code

A tool box for RPLAN dataset.

Usage

  1. Install dependency

  2. Load a floorplan

RPLAN_DIR = './data'
file_path = f'{RPLAN_DIR}/0.png'
fp = Floorplan(file_path)
img = fp.image
  1. Get image channels
fp.boundary
fp.category
fp.instance
fp.inside
  1. Get vector graphics information
data = fp.to_dict()
print(data.keys())
  1. Align rooms with boundary, neighbors
from rplan.align import align_fp_gt
boxes_aligned, order, room_boundaries = align_fp_gt(data['boundary'],data['boxes'],data['types'],data['edges'])
data['boxes_aligned'] = boxes_aligned
data['order'] = order
data['room_boundaries'] = room_boundaries
  1. Add doors and windows for a vector floorplan
from rplan.decorate import get_dw
doors,windows = get_dw(data)
data['doors'] = doors
data['windows'] = windows
  1. Plot floorplan
from rplan.plot import get_figure,get_axes
from rplan.plot import plot_category,plot_boundary,plot_graph,plot_fp
plot_category(fp.category) # raw image
plot_boundary(data['boundary']) # vector boundary
plot_graph(data['boundary'],data['boxes'],data['types'],data['edges']) # node graph
plot_fp(data['boundary'], data['boxes_aligned'][order], data['types'][order]) # vector floorplan
plot_fp(data['boundary'], data['boxes_aligned'][order], data['types'][order],data['doors'],data['windows']) # vector floorplan with doors and windows
  1. Get the turning function for a boundary
from rplan.measure import compute_tf
from rplan.plot import plot_tf

x,y = compute_tf(data['boundary'])
plot_tf(x,y)
  1. Cluster turning functions: See cluster_tf.py. Linux system and FAISS are required.

  2. Retrieve based on the turning function

import numpy as np
from rplan.measure import TFRetriever
tf = np.load('output/tf_discrete.npy')
tf_centroids = np.load('output/tf_centroids.npy')
tf_clusters = np.load('output/tf_clusters.npy')
retriever = TFRetriver(tf,tf_centroids,tf_clusters)
top_20 = retriever.retrieve_cluster(data['boundary'],k=20,beam_search=True) # Knn search
top_5 = retriever.retrieve_bf(data['boundary'],k=5) # argsort

Acknowledgement

About

A python based toolbox for RPLAN dataset

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 73.1%
  • MATLAB 26.9%