Skip to content

rxtan2/AVSeT

Repository files navigation

Video-Audio Separation through Text (VAST)

Codebase for submission"Language-Guided Audio-Visual Source Separation via Trimodal Consistency".

Environment

The code is developed under the following configurations.

  • Hardware: 1-4 GPUs (change [--num_gpus NUM_GPUS] accordingly)
  • Software: Ubuntu 16.04.3 LTS, CUDA>=10.3, Python>=3.5, PyTorch>=1.9.0

Training

  1. Prepare video dataset.

    a. Download MUSIC dataset from: https://github.com/roudimit/MUSIC_dataset

    b. Download videos.

  2. Preprocess videos. You can do it in your own way as long as the index files are similar.

    a. Extract frames at 8fps and waveforms at 11025Hz from videos. We have following directory structure:

    data
    ├── audio
    |   ├── acoustic_guitar
    │   |   ├── M3dekVSwNjY.mp3
    │   |   ├── ...
    │   ├── trumpet
    │   |   ├── STKXyBGSGyE.mp3
    │   |   ├── ...
    │   ├── ...
    |
    └── frames
    |   ├── acoustic_guitar
    │   |   ├── M3dekVSwNjY.mp4
    │   |   |   ├── 000001.jpg
    │   |   |   ├── ...
    │   |   ├── ...
    │   ├── trumpet
    │   |   ├── STKXyBGSGyE.mp4
    │   |   |   ├── 000001.jpg
    │   |   |   ├── ...
    │   |   ├── ...
    │   ├── ...
    

    b. Make training/validation index files by running:

    python scripts/create_index_files.py
    

    It will create index files train.csv/val.csv with the following format:

    ./data/audio/acoustic_guitar/M3dekVSwNjY.mp3,./data/frames/acoustic_guitar/M3dekVSwNjY.mp4,1580
    ./data/audio/trumpet/STKXyBGSGyE.mp3,./data/frames/trumpet/STKXyBGSGyE.mp4,493
    

    For each row, it stores the information: AUDIO_PATH,FRAMES_PATH,NUMBER_FRAMES

  3. Train the default model.

./scripts/train_bimodal_cyclic_losses_solos_music.sh
  1. During training, visualizations are saved in HTML format under ckpt/MODEL_ID/visualization/.

Evaluation

  1. (Optional) Download our trained model weights for evaluation.

Updates

We have observed that finetuning the separation model with the latent captions with a very low learning rate further helps to improve performance. More details will come soon.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published