Skip to content

s-nlp/llm-g2t

Repository files navigation

G2T LLM Evaluation

Here you can find scripts for LLM evaluation on the WEBNLG-2020 dataset

How to Use

Run python llm_evaluator.py --llm=<NAME OF LLM> --dataset_folder=<PATH TO FOLDER WITH WEBNLG DATASET> --dataset_filename=<FILENAME OF WEBNLG DATASET> --output_path=<WHERE TO STORE GENERATED GRAPH DESCRIPTIONS> to generate graph descriptions Supported LLMs are:

  • llama3:8b
  • gemma2:9b
  • gpt-4o
  • gpt-4o-mini

Run python metrics_evaluator.py --preds_path=<PATH TO FILE WITH GRAPH DESCRIPTIONS FROM LLM> --dataset_folder=<PATH TO FOLDER WITH WEBNLG DATASET> --dataset_filename=<FILENAME OF WEBNLG DATASET> --output_path=<WHERE TO STORE DETAILED METRICS> to evaluate WEBNLG metrics and alignscore_evaluator.py for the AlignScore.

Future Work, Citation & Contacts

If you find some issues, do not hesitate to add it to Github Issues.

For any questions please contact: Dmitrii Iarosh, Mikhail Salnikov or Alexander Panchenko

@inproceedings{iarosh-etal-2025-g2t-hallucinations,
    title = "On Reducing Factual Hallucinations in Graph-to-Text Generation using Large Language Models",
    author = "Iarosh, Dmitrii and
      Salnikov, Mikhail and
      Panchenko, Alexander",
    booktitle = "Proceedings of the COLING 2025 GenAIK 2025 Workshop",
    month = feb,
    year = "2025",
}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages