Skip to content

Repository for prompt-decoding using LLMs (GPT3.5, GPT4, Vicuna, and Zephyr)

License

Notifications You must be signed in to change notification settings

sahel-sh/rank_llm

 
 

Repository files navigation

RankLLM

PyPI Downloads Downloads Generic badge LICENSE

We offer a suite of prompt decoders, albeit with a current focus on RankVicuna. Some of the code in this repository is borrowed from RankGPT!

Releases

current_version = 0.2.3

📟 Instructions

Create Conda Environment

conda create -n rankllm python=3.10
conda activate rankllm

Install Pytorch with CUDA

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

Install Dependencies

pip install -r requirements.txt

Run end to end Test

python src/rank_llm/scripts/run_rank_llm.py  --model_path=castorini/rank_zephyr_7b_v1_full --top_k_candidates=100 --dataset=dl20 \
--retrieval_method=SPLADE++_EnsembleDistil_ONNX --prompt_mode=rank_GPT  --context_size=4096 --variable_passages

🦙🐧 Model Zoo

The following is a table of our models hosted on HuggingFace:

Model Name Hugging Face Identifier/Link
RankZephyr 7B V1 - Full - BF16 castorini/rank_zephyr_7b_v1_full
RankVicuna 7B - V1 castorini/rank_vicuna_7b_v1
RankVicuna 7B - V1 - No Data Augmentation castorini/rank_vicuna_7b_v1_noda
RankVicuna 7B - V1 - FP16 castorini/rank_vicuna_7b_v1_fp16
RankVicuna 7B - V1 - No Data Augmentation - FP16 castorini/rank_vicuna_7b_v1_noda_fp16

✨ References

If you use RankLLM, please cite the following relevant papers:

[2309.15088] RankVicuna: Zero-Shot Listwise Document Reranking with Open-Source Large Language Models

@ARTICLE{pradeep2023rankvicuna,
  title   = {{RankVicuna}: Zero-Shot Listwise Document Reranking with Open-Source Large Language Models},
  author  = {Ronak Pradeep and Sahel Sharifymoghaddam and Jimmy Lin},
  year    = {2023},
  journal = {arXiv:2309.15088}
}

[2312.02724] RankZephyr: Effective and Robust Zero-Shot Listwise Reranking is a Breeze!

@ARTICLE{pradeep2023rankzephyr,
  title   = {{RankZephyr}: Effective and Robust Zero-Shot Listwise Reranking is a Breeze!},
  author  = {Ronak Pradeep and Sahel Sharifymoghaddam and Jimmy Lin},
  year    = {2023},
  journal = {arXiv:2312.02724}
}

🙏 Acknowledgments

This research is supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

About

Repository for prompt-decoding using LLMs (GPT3.5, GPT4, Vicuna, and Zephyr)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%