Skip to content

Commit

Permalink
Merge pull request #268 from alanlujan91/cycles_0
Browse files Browse the repository at this point in the history
cycles = 0
  • Loading branch information
sbenthall authored Feb 8, 2024
2 parents 2e8afc8 + 34ee98a commit bfdbc8b
Show file tree
Hide file tree
Showing 6 changed files with 2,409 additions and 1,880 deletions.
2,889 changes: 1,239 additions & 1,650 deletions macro/Numerical Buffer Stock on Portfolio Models.ipynb

Large diffs are not rendered by default.

257 changes: 39 additions & 218 deletions macro/dashboard_default.ipynb

Large diffs are not rendered by default.

341 changes: 341 additions & 0 deletions macro/dashboard_scaled.ipynb

Large diffs are not rendered by default.

38 changes: 38 additions & 0 deletions macro/macro_parameters.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
import numpy as np
from HARK.ConsumptionSaving.ConsPortfolioModel import init_portfolio

######################
# Change Defaults #
######################

sharkfin_portfolio = init_portfolio.copy()
sharkfin_portfolio["cycles"] = 0 # 0 for infinite horizon
sharkfin_portfolio["PermGroFac"] = [1.0] # no drift in perm income
sharkfin_portfolio["LivPrb"] = [1.0] # no death
sharkfin_portfolio["Rfree"] = 1.0 # risk free return, to focus on eq_prem
sharkfin_portfolio["ex_post"] = None # ex post parameters
sharkfin_portfolio["UnempPrb"] = 0 # no unemployment

######################
# Annual Parameters #
######################

annual_params = sharkfin_portfolio.copy()
annual_params["CRRA"] = 5
annual_params["DiscFac"] = 0.90
annual_params["RiskyAvg"] = 1.05 # eq_prem is RiskyAvg - Rfree = 0.05
annual_params["RiskyStd"] = 0.2 # standard deviation of risky returns
annual_params["PermShkStd"] = [0.1] # standard deviation of permanent shocks
annual_params["TranShkStd"] = [0.1] # standard deviation of transitory shocks

######################
# Quarterly Parameters #
######################

quarterly_params = annual_params.copy()
quarterly_params["DiscFac"] = annual_params["DiscFac"] ** (1 / 4)
quarterly_params["RiskyAvg"] = annual_params["RiskyAvg"] ** (1 / 4)
quarterly_params["RiskyStd"] = annual_params["RiskyStd"] / 2
quarterly_params["PermShkStd"] = list(np.asarray(annual_params["PermShkStd"]) / 2)
quarterly_params["TranShkStd"] = list(4 * np.asarray(annual_params["TranShkStd"]))
quarterly_params["aXtraMax"] = 4 * annual_params["aXtraMax"]
Loading

0 comments on commit bfdbc8b

Please sign in to comment.