Skip to content

sdemyanov/awesome-tensorflow

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

92 Commits
 
 
 
 
 
 

Repository files navigation

Awesome TensorFlow Awesome

A curated list of awesome TensorFlow experiments, libraries, and projects. Inspired by awesome-machine-learning.

What is TensorFlow?

TensorFlow is an open source software library for numerical computation using data flow graphs. In other words, the best way to build deep learning models.

More info here.

Table of Contents

## Tutorials * [TensorFlow Tutorial 1](https://github.com/pkmital/tensorflow_tutorials) - From the basics to slightly more interesting applications of TensorFlow * [TensorFlow Tutorial 2](https://github.com/nlintz/TensorFlow-Tutorials) - Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano * [TensorFlow Examples](https://github.com/aymericdamien/TensorFlow-Examples) - TensorFlow tutorials and code examples for beginners * [TensorFlow WorkLab](https://github.com/sdemyanov/tensorflow-worklab) - Set of classes and scripts to train, retrain and evaluate Tensorflow models * [Sungjoon's TensorFlow-101](https://github.com/sjchoi86/Tensorflow-101) - TensorFlow tutorials written in pyhton with Jupyter Notebook * [Terry Um’s TensorFlow Exercises](https://github.com/terryum/TensorFlow_Exercises) - Re-create the codes from other TensorFlow examples * [Installing TensorFlow on Raspberry Pi 3](https://github.com/samjabrahams/tensorflow-on-raspberry-pi) - TensorFlow compiled and running properly on the Raspberry Pi ## Models/Projects * [Pretty Tensor](https://github.com/google/prettytensor) - Pretty Tensor provides a high level builder API * [Neural Style](https://github.com/anishathalye/neural-style) - An implementation of neural style * [TensorFlow White Paper Notes](https://github.com/samjabrahams/tensorflow-white-paper-notes) - Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation * [NeuralArt](https://github.com/ckmarkoh/neuralart_tensorflow) - Implementation of A Neural Algorithm of Artistic Style * [Deep-Q learning Pong with TensorFlow and PyGame](http://www.danielslater.net/2016/03/deep-q-learning-pong-with-tensorflow.html) * [Generative Handwriting Demo using TensorFlow](https://github.com/hardmaru/write-rnn-tensorflow) - An attempt to implement the random handwriting generation portion of Alex Graves' paper * [Neural Turing Machine in TensorFlow](https://github.com/carpedm20/NTM-tensorflow) - implementation of Neural Turing Machine * [GoogleNet Convolutional Neural Network Groups Movie Scenes By Setting] (https://github.com/agermanidis/thingscoop) - Search, filter, and describe videos based on objects, places, and other things that appear in them * [Neural machine translation between the writings of Shakespeare and modern English using TensorFlow](https://github.com/tokestermw/tensorflow-shakespeare) - This performs a monolingual translation, going from modern English to Shakespeare and vis-versa. * [Colornet - Neural Network to colorize grayscale images] (https://github.com/pavelgonchar/colornet) - Neural Network to colorize grayscale images * [Neural Caption Generator](https://github.com/jazzsaxmafia/show_attend_and_tell.tensorflow) - Implementation of ["Show and Tell"](http://arxiv.org/abs/1411.4555) * [Neural Caption Generator with Attention](https://github.com/jazzsaxmafia/show_attend_and_tell.tensorflow) - Implementation of ["Show, Attend and Tell"](http://arxiv.org/abs/1502.03044) * [Weakly_detector](https://github.com/jazzsaxmafia/Weakly_detector) - Implementation of ["Learning Deep Features for Discriminative Localization"](http://cnnlocalization.csail.mit.edu/) * [Dynamic Capacity Networks](https://github.com/jazzsaxmafia/dcn.tf) - Implementation of ["Dynamic Capacity Networks"](http://arxiv.org/abs/1511.07838) * [HMM in TensorFlow](https://github.com/dwiel/tensorflow_hmm) - Implementation of viterbi and forward/backward algorithms for HMM * [DeepOSM](https://github.com/trailbehind/DeepOSM) - Train TensorFlow neural nets with OpenStreetMap features and satellite imagery. * [DQN-tensorflow](https://github.com/devsisters/DQN-tensorflow) - Tensorflow implementation of DeepMind's 'Human-Level Control through Deep Reinforcement Learning' with OpenAI Gym by Devsisters.com * [Highway Network](https://github.com/fomorians/highway-cnn) - Tensorflow implementation of ["Training Very Deep Networks"](http://arxiv.org/abs/1507.06228) with a [blog post](https://medium.com/jim-fleming/highway-networks-with-tensorflow-1e6dfa667daa#.ndicn1i27) * [Sentence Classification with CNN](https://github.com/dennybritz/cnn-text-classification-tf) - Tensorflow implementation of ["Convolutional Neural Networks for Sentence Classification"](http://arxiv.org/abs/1408.5882) with a [blog post](http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/) ## Powered by TensorFlow * [YOLO TensorFlow](https://github.com/gliese581gg/YOLO_tensorflow) - Implementation of 'YOLO : Real-Time Object Detection' * [Magenta](https://github.com/tensorflow/magenta) - Research project to advance the state of the art in machine intelligence for music and art generation ## Libraries * [skflow](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/learn/python/learn) - Simplified interface (mimicking Scikit Learn) for Deep Learning (now part of TensorFlow as TF Learn Module) * [tflearn](https://github.com/tflearn/tflearn) - Deep learning library featuring a higher-level API * [TensorFlow-Slim](https://github.com/tensorflow/models/tree/master/inception/inception/slim) - High-level library for defining models * [TensorFrames](https://github.com/tjhunter/tensorframes) - TensorFlow binding for Apache Spark * [caffe-tensorflow](https://github.com/ethereon/caffe-tensorflow) - Convert Caffe models to TensorFlow format * [keras](http://keras.io) - Minimal, modular deep learning library for TensorFlow and Theano * [SyntaxNet: Neural Models of Syntax](https://github.com/tensorflow/models/tree/master/syntaxnet) - A TensorFlow implementation of the models described in [Globally Normalized Transition-Based Neural Networks, Andor et al. (2016)](http://arxiv.org/pdf/1603.06042.pdf) ##Videos * [TensorFlow Guide 1](http://bit.ly/1OX8s8Y) - A guide to installation and use * [TensorFlow Guide 2](http://bit.ly/1R27Ki9) - Continuation of first video * [TensorFlow Basic Usage](http://bit.ly/1TCNmEY) - A guide going over basic usage * [TensorFlow Deep MNIST for Experts](http://bit.ly/1L9IfJx) - Goes over Deep MNIST * [TensorFlow Udacity Deep Learning](https://www.youtube.com/watch?v=ReaxoSIM5XQ) - Basic steps to install TensorFlow for free on the Cloud 9 online service with 1Gb of data * [Why Google wants everyone to have access to TensorFlow](http://video.foxnews.com/v/4611174773001/why-google-wants-everyone-to-have-access-to-tensorflow/?#sp=show-clips) * [Videos from TensorFlow Silicon Valley Meet Up 1/19/2016](http://blog.altoros.com/videos-from-tensorflow-silicon-valley-meetup-january-19-2016.html) * [Videos from TensorFlow Silicon Valley Meet Up 1/21/2016](http://blog.altoros.com/videos-from-tensorflow-seattle-meetup-jan-21-2016.html) * [Stanford CS224d Lecture 7 - Introduction to TensorFlow, 19th Apr 2016](https://www.youtube.com/watch?v=L8Y2_Cq2X5s&index=7&list=PLmImxx8Char9Ig0ZHSyTqGsdhb9weEGam) - CS224d Deep Learning for Natural Language Processing by Richard Socher * [Diving into Machine Learning through TensorFlow](https://youtu.be/GZBIPwdGtkk?list=PLBkISg6QfSX9HL6us70IBs9slFciFFa4W) - Pycon 2016 Portland Oregon, [Slide](https://storage.googleapis.com/amy-jo/talks/tf-workshop.pdf) & [Code](https://github.com/amygdala/tensorflow-workshop) by Julia Ferraioli, Amy Unruh, Eli Bixby ##Papers * [TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems](http://download.tensorflow.org/paper/whitepaper2015.pdf) - This paper describes the TensorFlow interface and an implementation of that interface that we have built at Google * [Comparative Study of Deep Learning Software Frameworks](http://arxiv.org/abs/1511.06435) - The study is performed on several types of deep learning architectures and we evaluate the performance of the above frameworks when employed on a single machine for both (multi-threaded) CPU and GPU (Nvidia Titan X) settings * [Distributed TensorFlow with MPI](http://arxiv.org/abs/1603.02339) - In this paper, we extend recently proposed Google TensorFlow for execution on large scale clusters using Message Passing Interface (MPI) * [Globally Normalized Transition-Based Neural Networks](http://arxiv.org/abs/1603.06042) - This paper describes the models behind [SyntaxNet](https://github.com/tensorflow/models/tree/master/syntaxnet). * [TensorFlow: A system for large-scale machine learning](https://arxiv.org/abs/1605.08695) - This paper describes the TensorFlow dataflow model in contrast to existing systems, and demonstrate the compelling performance

Blog posts

## Community * [Stack Overflow](http://stackoverflow.com/questions/tagged/tensorflow) * [@TensorFlo on Twitter](https://twitter.com/TensorFlo) * [Reddit](https://www.reddit.com/r/tensorflow) * [Mailing List](https://groups.google.com/a/tensorflow.org/forum/#!forum/discuss) ## Books * [First Contact with TensorFlow](http://www.jorditorres.org/first-contact-with-tensorflow/) by Jordi Torres, professor at UPC Barcelona Tech and a research manager and senior advisor at Barcelona Supercomputing Center * [Deep Learning with Python](https://machinelearningmastery.com/deep-learning-with-python/) - Develop Deep Learning Models on Theano and TensorFlow Using Keras by Jason Brownlee ## Contributions Your contributions are always welcome!

If you want to contribute to this list (please do), send me a pull request or contact me @jtoy Also, when you noticed that listed repository should be deprecated.

  • Repository's owner explicitly say that "this library is not maintained".
  • Not committed for long time (2~3 years).

More info on the guidelines

## Credits
  • Some of the python libraries were cut-and-pasted from vinta
  • The few go reference I found where pulled from this page

About

TensorFlow - A curated list of dedicated resources http://tensorflow.org

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published