Skip to content

Commit

Permalink
fix(gemini-01): fix typos
Browse files Browse the repository at this point in the history
  • Loading branch information
surfer05 committed Jan 8, 2025
1 parent 548bc2f commit aee9f7a
Show file tree
Hide file tree
Showing 2 changed files with 2 additions and 2 deletions.
2 changes: 1 addition & 1 deletion gemini/Gemini-PCS-1.md
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,7 @@ $$
\langle\vec{f}, \otimes_{j=0}^{2}(1,\rho_j) \rangle = \langle\vec{f}_1, \otimes_{j=1}^{2}(1,\rho_j) \rangle + \rho_0 \langle\vec{f}_2, \otimes_{j=1}^{2}(1,\rho_j) \rangle
$$

Note that in these two subproblems, the right elements of the inner product are the same: both are $\otimes_{j=0}^1 (1,\rho_j)$, so they can be further combined into one $\langle\vec{f}_1 + \rho_0 \vec{f}_2, \otimes_{j=1}^{2}(1,\rho_j) \rangle$.
Note that in these two subproblems, the right elements of the inner product are the same: both are $\otimes_{j=1}^2 (1,\rho_j)$, so they can be further combined into one $\langle\vec{f}_1 + \rho_0 \vec{f}_2, \otimes_{j=1}^{2}(1,\rho_j) \rangle$.

It can be seen that for a vector $\vec{f}$ of length $N$, we divide it into two vectors of length $N/2$, and then combine them into one vector. Through this round of operation, we turn a tensor product problem of size $N$ into a problem of size $N/2$.

Expand Down
2 changes: 1 addition & 1 deletion gemini/Gemini-PCS-1.zh.md
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,7 @@ $$
\langle\vec{f}, \otimes_{j=0}^{2}(1,\rho_j) \rangle = \langle\vec{f}_1, \otimes_{j=1}^{2}(1,\rho_j) \rangle + \rho_0 \langle\vec{f}_2, \otimes_{j=1}^{2}(1,\rho_j) \rangle
$$

注意到,这两个子问题中,内积的右边元素相同:均为 $\otimes_{j=0}^1 (1,\rho_j)$,因此它们可以进一步合并成一个 $\langle\vec{f}_1 + \rho_0 \vec{f}_2, \otimes_{j=1}^{2}(1,\rho_j) \rangle$。
注意到,这两个子问题中,内积的右边元素相同:均为 $\otimes_{j=1}^2 (1,\rho_j)$,因此它们可以进一步合并成一个 $\langle\vec{f}_1 + \rho_0 \vec{f}_2, \otimes_{j=1}^{2}(1,\rho_j) \rangle$。

可以看到,对于一个 $N$ 长度的向量 $\vec{f}$,我们将其分开为两个 $N/2$ 长度的向量,再合并成一个向量。通过这一轮操作,我们把一个 $N$ 大小的 tensor product 问题变成了 $N/2$ 大小的问题。

Expand Down

0 comments on commit aee9f7a

Please sign in to comment.