Skip to content

Commit

Permalink
fix(gemini): fix typos
Browse files Browse the repository at this point in the history
  • Loading branch information
wenjin1997 committed Jan 21, 2025
1 parent b8db11f commit b40df48
Show file tree
Hide file tree
Showing 4 changed files with 6 additions and 6 deletions.
4 changes: 2 additions & 2 deletions gemini/Gemini-PCS-1.md
Original file line number Diff line number Diff line change
Expand Up @@ -234,7 +234,7 @@ Therefore, to compile the IOP protocol, we only need to commit to the polynomial
**Degree Bound Proof:** To prove $deg(f)\leq d$

- The prover provides $[f(\tau)]_1$ and additionally sends $[\tau^{D-d}\cdot f(\tau)]_1$ to the verifier
- The verifier checks the equation $e([f(\tau)]_1, [1]_2) = e([\tau^{D-d}\cdot f(\tau)]_1, [\tau^{D-d}]_2)$
- The verifier checks the equation $e([f(\tau)]_1, [\tau^{D-d}]_2) = e([\tau^{D-d}\cdot f(\tau)]_1, [1]_2)$

**Multi-point Evaluation Proof:** To prove that $f(X)$ is opened as $u_1,u_2,u_3$ at $\beta_1, \beta_2, \beta_3$

Expand Down Expand Up @@ -266,7 +266,7 @@ Below we first give the Multi-to-Uni AoK scheme compiled based on KZG:
4. The prover calculates the evaluation proof for each polynomial, where
- $[q^{(0)}(\tau)]_1 = \frac{f^{(0)}(\tau)-g^{(0)}(\tau)}{(\tau-\beta)(\tau+\beta)}$ % $f^{(0)}(\beta), f^{(0)}(-\beta)$
- $[q^{(j)}(\tau)]_1 = \frac{f^{(j)}(\tau)-g^{(j)}(\tau)}{(\tau-\beta)(\tau+\beta)(\tau-\beta^2)}$ % $f^{(j)}(\beta), f^{(j)}(-\beta), f^{(j)}(\beta^2), j=1,...,n-1$
5. The verifier checks:
1. The verifier checks:
- The correctness of degree bound proofs $[\tau^{D-N\cdot 2^{-j} + 1}\cdot f^{(j)}(\tau)]_1, j = 0,\ldots n-1$ for $f^{(0)},...,f^{(n-1)}$
- The correctness of multi-point evaluation proofs $[q^{(0)}(\tau)]_1,\ldots [q^{(n-1)}(\tau)]_1$ for $f^{(0)},...,f^{(n-1)}$
- The correctness of split-and-fold relations, i.e., for $j = 0,...,n-1$, whether the following equation holds:
Expand Down
4 changes: 2 additions & 2 deletions gemini/Gemini-PCS-1.zh.md
Original file line number Diff line number Diff line change
Expand Up @@ -166,7 +166,7 @@ $$

# 多元到一元转换

在介绍多元到一元转换的协议的之前,我们再深入分析一下 tensor product 协议中隐藏的一些原理。虽然 tensor product 协议的目标时证明一个多元多项式的取值,但除了输入多元多项式的系数向量以外,协议中涉及的多项式均为一元的。
在介绍多元到一元转换的协议的之前,我们再深入分析一下 tensor product 协议中隐藏的一些原理。虽然 tensor product 协议的目标是证明一个多元多项式的取值,但除了输入多元多项式的系数向量以外,协议中涉及的多项式均为一元的。

我们不妨将 Split-and-fold 过程用一元多项式写出来:

Expand Down Expand Up @@ -234,7 +234,7 @@ $$
**Degree Bound 证明:** 为了证明 $deg(f)\leq d$

- 证明者提供 $[f(\tau)]_1$ 并附加上 $[\tau^{D-d}\cdot f(\tau)]_1$ 发送给验证者
- 验证者检查等式 $e([f(\tau)]_1, [1]_2) = e([\tau^{D-d}\cdot f(\tau)]_1, [\tau^{D-d}]_2)$
- 验证者检查等式 $e([f(\tau)]_1, [\tau^{D-d}]_2) = e([\tau^{D-d}\cdot f(\tau)]_1, [1]_2)$

**多点求值证明:**为了证明 $f(X)$ 在 $\beta_1, \beta_2, \beta_3$ 公开为 $u_1,u_2,u_3$

Expand Down
2 changes: 1 addition & 1 deletion gemini/Gemini-PCS-2.md
Original file line number Diff line number Diff line change
Expand Up @@ -136,7 +136,7 @@ Obviously, the messages in steps 1 and 3 are probabilistically indistinguishable
Next, we only need to show that the tensor product check protocol run by $S$ and $V^*$ in step 4 also satisfies this property. Specifically, because the protocol satisfies soundness, for each oracle $h^{(j)}, j=0,...,n-1$, it satisfies

$$
h^{(j)}(X^2)=\frac{h^{(j-1)}(X)+f^{(j-1)}(-X)}{2} + \rho \cdot \frac{h^{(j-1)}(X)-h^{(j-1)}(-X)}{2X}
h^{(j)}(X^2)=\frac{h^{(j-1)}(X)+h^{(j-1)}(-X)}{2} + \rho \cdot \frac{h^{(j-1)}(X)-h^{(j-1)}(-X)}{2X}
$$

Note that for $h^{(j-1)}(X)$ on the right side of the equation, its corresponding oracle also satisfies an equation related to $h^{(j-2)}(X)$. Therefore, we can always expand the right expression satisfied by any $h^{(j)}(X^2)$ into a form that only includes $h^{(0)}(X), h^{(0)}(-X), h^{(0)}(X^2)$. Thus, the response obtained by $V^*$ querying the oracle $h^{(j)}$ at any point $\beta$ must be a linearly independent constraint on $\vec{h}$.
Expand Down
2 changes: 1 addition & 1 deletion gemini/Gemini-PCS-2.zh.md
Original file line number Diff line number Diff line change
Expand Up @@ -136,7 +136,7 @@ $$
接下来,我们只需要说明第4步中运行的 $S$ 与 $V^*$ 运行 tensor product 检查协议同样满足这一性质即可。具体来说,因为协议满足 soundness,对于每一个 oracle $h^{(j)}, j=0,...,n-1$,其满足

$$
h^{(j)}(X^2)=\frac{h^{(j-1)}(X)+f^{(j-1)}(-X)}{2} + \rho \cdot \frac{h^{(j-1)}(X)-h^{(j-1)}(-X)}{2X}
h^{(j)}(X^2)=\frac{h^{(j-1)}(X)+h^{(j-1)}(-X)}{2} + \rho \cdot \frac{h^{(j-1)}(X)-h^{(j-1)}(-X)}{2X}
$$

注意到,对于等式右边的 $h^{(j-1)}(X)$ 它对应的 oracle 同样满足一个与 $h^{(j-2)}(X)$ 相关的等式。因此我们总能够将任意 $h^{(j)}(X^2)$ 所满足的右式展开为一个只包含 $h^{(0)}(X), h^{(0)}(-X), h^{(0)}(X^2)$ 形式。因此 $V^*$ 对 oracle $h^{(j)}$ 在任意点 $\beta$ 上进行问询所得到的回复,一定是一个关于 $\vec{h}$ 的一个线性独立的约束。
Expand Down

0 comments on commit b40df48

Please sign in to comment.