Skip to content

Pytorch implementation for Classification, Semantic Segmentation and Object Detection

License

Notifications You must be signed in to change notification settings

soeaver/pytorch-priv

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pytorch-priv

Pytorch implementation for Classification, Semantic Segmentation, Pose Estimation and Object Detection

  • Image Classification
  • Semantic Segmentation (progressing...)
  • Object Detection (progressing...)
  • Pose Estimation (progressing...)

Install

Training and Evaluating

For training:

  1. Modify the .yml file in ./cfg/imagenet/air50-1x64d:

    • the ckpt is used to save the checkpoints
    • if you want use cosine learning rate, please set cosine_lr: True, then lr_schedule and gamma will not be used
    • for resuming training, add the model.pth.tar to resume: and modify start_epoch
    • rotation, pixel_jitter and grayscale are extra data augmentation, recommended for training complex networks only
  2. Train a network:

    python cls_train.py --cfg ./cfg/imagenet/air50_1x64d.yml 
    

    2.1 Training with mixup (optional):

    python tools/cls_mixup_train.py --cfg ./cfg/imagenet/air50_1x64d_mixup.yml 
    

    for better performace:

    • double the epochs for training with mixup
    • a few extra epochs with no mixup after the process above

    2.2 Ttraining cifar dataset (optional):

    python tools/cls_cifar.py --cfg ./cfg/cifar10/resnext29_8x64d.yml
    

    or with mixup (usually weight_decay: 0.0001):

    python tools/cls_mixup_cifar.py --cfg ./cfg/cifar10/resnext29_8x64d_mixup.yml
    

For evaluating:

  1. Modify the .yml file in ./cfg/imagenet/air50-1x64d:

    • add the model.pth.tar to pretrained:
    • set the evaluate: True
  2. Evaluate a network:

    python train_cls.py --cfg ./cfg/imagenet/air50_1x64d.yml 
    

For evaluating image by image:

  1. Modify the tools/cls_eval.py file

  2. Evaluate a network:

    python tools/cls_eval.py
    

Features

Results

ImageNet1k

Single-crop (224x224) validation error rate is reported.

Network                 Flops (M) Params (M) Top-1 Error (%) Top-5 Error (%) Speed (im/sec)
resnet50-1x64d 4342.1 25.5 23.52 7.01 157.1
resnet101-1x64d 8039.0 44.5 22.18 6.23 91.7
  • Speed test on single Titan xp GPU with batch_size: 1.

Cifar10 & Cifar100

Validation error rate is reported.

Network                 Flops (M) Params (M) Cifar10 Top-1
Error (%)
Cifar100 Top-1
Error (%)
resnext29-8x64d 5387.2 34.4 3.73 18.55
resnext29-8x64d-mixup 5387.2 34.4 2.90 --
resnext29-8x64d-re       5387.2   34.4       3.55                       --                          

License

pytorch-priv is released under the MIT License (refer to the LICENSE file for details).

Contribute

Feel free to create a pull request if you find any bugs or you want to contribute (e.g., more datasets and more network structures).

About

Pytorch implementation for Classification, Semantic Segmentation and Object Detection

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published