Skip to content

springbreeze7111/detr-4087

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 

Repository files navigation

TODO

  • Training
  • Evaluation
  • Export onnx
  • Upload source code
  • Upload weight convert from paddle, see links
  • Align training details with the paddle version
  • Tuning rtdetr based on pretrained weights

Quick start

Install
pip install -r requirements.txt
Data
  • Download and extract COCO 2017 train and val images.
path/to/coco/
  annotations/  # annotation json files
  train2017/    # train images
  val2017/      # val images
Training & Evaluation
  • Training on a Single GPU:
# training on single-gpu
export CUDA_VISIBLE_DEVICES=0
python tools/train.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml
  • Training on Multiple GPUs:
# train on multi-gpu
export CUDA_VISIBLE_DEVICES=0,1,2,3
torchrun --nproc_per_node=4 tools/train.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml
  • Evaluation on Multiple GPUs:
# val on multi-gpu
export CUDA_VISIBLE_DEVICES=0,1,2,3
torchrun --nproc_per_node=4 tools/train.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml -r path/to/checkpoint --test-only
Export
python tools/export_onnx.py -c configs/rtdetr/rtdetr_r18vd_6x_coco.yml -r path/to/checkpoint --check
Train custom data
  1. set remap_mscoco_category: False. This variable only works for ms-coco dataset.

  2. add -t path/to/checkpoint (optinal) to tuning rtdetr based on pretrained checkpoint. see training script details.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published