Skip to content
/ UniFL Public

Official Code for "Universal EHR Federated Learning Framework" (ML4H 2022)

License

Notifications You must be signed in to change notification settings

starmpcc/UniFL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Universal EHR Federated Learning Framework

This repository is the official implementation for UniFL

Release Note

  • 2023.09.16: Support MIMIC-IV 2.0 & Bug Fix

How to Run

Requirements

$ conda env create -n unifl -f env.yaml

Preprocessing

  • MIMIC-III, MIMIC-IV, eICU are public, but require some certificates

  • Download the files from below links:

  • Then, execute the preprocessing codes

$ cd preprocess
$ bash preprocess_run.sh {MIMIC-III} {MIMIC-IV} {eICU} {save_path}
  • Note that the preprocessing takes about 1 hours with AMD EPYC 7502 32-core processor, and it requires more than 60GB of RAM.

Model train

$ python src/main.py --device_num 0 --input_path <INPUT_PATH> --save_dir <SAVE_PATH> --train_type fedrated --algorithm fedpxn --pred_target mort --wandb_entity_name <ENTITY_NAME> --wandb_project_name <PROJECT_NAME>

or, you can execute multiple experiments simulatneously with scheduler.py


NOTE

  • Pause & Resume is only supported for fedrated learning (Kubernetis support)
  • Pause & Resume is not verified with distributed environment
  • We used one A100 80G gpu or two A6000 48G gpus for each run
  • Distributed Data Parallel (DDP) with resume is not tested
  • You can check hyperparameters on main.py

Citation

@article{kim2022universal,
  title={Universal EHR federated learning framework},
  author={Kim, Junu and Hur, Kyunghoon and Yang, Seongjun and Choi, Edward},
  journal={arXiv preprint arXiv:2211.07300},
  year={2022}
}

About

Official Code for "Universal EHR Federated Learning Framework" (ML4H 2022)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published