Skip to content
forked from wandb/wandb

🔥 A tool for visualizing and tracking your machine learning experiments. This repo contains the CLI and Python API.

License

Notifications You must be signed in to change notification settings

stellarpower/wandb

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Weights & Biases Weights & Biases

Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to production machine learning models. Get started with W&B today, sign up for a free account!

🎓 W&B is free for students, educators, and academic researchers. For more information, visit https://wandb.ai/site/research.

Want to use Weights & Biases for seamless collaboration between your ML or Data Science team? Looking for Production-grade MLOps at scale? Sign up to one of our plans or contact the Sales Team.

 

Documentation

Weights and Biases Experiments Weights and Biases Reports Weights and Biases Artifacts Weights and Biases Tables Weights and Biases Sweeps Weights and Biases Launch Weights and Biases Model Management Weights and Biases Prompts Weights and Biases Prompts

See the W&B Developer Guide and API Reference Guide for a full technical description of the W&B platform.

Quickstart

Get started with W&B in four steps:

  1. First, sign up for a free W&B account.

  2. Second, install the W&B SDK with pip. Navigate to your terminal and type the following command:

pip install wandb
  1. Third, log into W&B:
wandb.login()
  1. Use the example code snippet below as a template to integrate W&B to your Python script:
import wandb

# Start a W&B Run with wandb.init
run = wandb.init(project="my_first_project")

# Save model inputs and hyperparameters in a wandb.config object
config = run.config
config.learning_rate = 0.01

# Model training code here ...

# Log metrics over time to visualize performance with wandb.log
for i in range(10):
    run.log({"loss": loss})

That's it! Navigate to the W&B App to view a dashboard of your first W&B Experiment. Use the W&B App to compare multiple experiments in a unified place, dive into the results of a single run, and much more!

Example W&B Dashboard that shows Runs from an Experiment.

 

Integrations

Use your favorite framework with W&B. W&B integrations make it fast and easy to set up experiment tracking and data versioning inside existing projects. For more information on how to integrate W&B with the framework of your choice, see the Integrations chapter in the W&B Developer Guide.

🔥 PyTorch

Call .watch and pass in your PyTorch model to automatically log gradients and store the network topology. Next, use .log to track other metrics. The following example demonstrates an example of how to do this:

import wandb

# 1. Start a new run
run = wandb.init(project="gpt4")

# 2. Save model inputs and hyperparameters
config = run.config
config.dropout = 0.01

# 3. Log gradients and model parameters
run.watch(model)
for batch_idx, (data, target) in enumerate(train_loader):
    ...
    if batch_idx % args.log_interval == 0:
        # 4. Log metrics to visualize performance
        run.log({"loss": loss})
🌊 TensorFlow/Keras Use W&B Callbacks to automatically save metrics to W&B when you call `model.fit` during training.

The following code example demonstrates how your script might look like when you integrate W&B with Keras:

# This script needs these libraries to be installed:
#   tensorflow, numpy

import wandb
from wandb.keras import WandbMetricsLogger, WandbModelCheckpoint

import random
import numpy as np
import tensorflow as tf


# Start a run, tracking hyperparameters
run = wandb.init(
    # set the wandb project where this run will be logged
    project="my-awesome-project",
    # track hyperparameters and run metadata with wandb.config
    config={
        "layer_1": 512,
        "activation_1": "relu",
        "dropout": random.uniform(0.01, 0.80),
        "layer_2": 10,
        "activation_2": "softmax",
        "optimizer": "sgd",
        "loss": "sparse_categorical_crossentropy",
        "metric": "accuracy",
        "epoch": 8,
        "batch_size": 256,
    },
)

# [optional] use wandb.config as your config
config = run.config

# get the data
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
x_train, y_train = x_train[::5], y_train[::5]
x_test, y_test = x_test[::20], y_test[::20]
labels = [str(digit) for digit in range(np.max(y_train) + 1)]

# build a model
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(config.layer_1, activation=config.activation_1),
        tf.keras.layers.Dropout(config.dropout),
        tf.keras.layers.Dense(config.layer_2, activation=config.activation_2),
    ]
)

# compile the model
model.compile(optimizer=config.optimizer, loss=config.loss, metrics=[config.metric])

# WandbMetricsLogger will log train and validation metrics to wandb
# WandbModelCheckpoint will upload model checkpoints to wandb
history = model.fit(
    x=x_train,
    y=y_train,
    epochs=config.epoch,
    batch_size=config.batch_size,
    validation_data=(x_test, y_test),
    callbacks=[
        WandbMetricsLogger(log_freq=5),
        WandbModelCheckpoint("models"),
    ],
)

# [optional] finish the wandb run, necessary in notebooks
run.finish()

Get started integrating your Keras model with W&B today:

🤗 Hugging Face Transformers

Pass wandb to the report_to argument when you run a script using a Hugging Face Trainer. W&B will automatically log losses, evaluation metrics, model topology, and gradients.

Note: The environment you run your script in must have wandb installed.

The following example demonstrates how to integrate W&B with Hugging Face:

# This script needs these libraries to be installed:
#   numpy, transformers, datasets

import wandb

import os
import numpy as np
from datasets import load_dataset
from transformers import TrainingArguments, Trainer
from transformers import AutoTokenizer, AutoModelForSequenceClassification


def tokenize_function(examples):
    return tokenizer(examples["text"], padding="max_length", truncation=True)


def compute_metrics(eval_pred):
    logits, labels = eval_pred
    predictions = np.argmax(logits, axis=-1)
    return {"accuracy": np.mean(predictions == labels)}


# download prepare the data
dataset = load_dataset("yelp_review_full")
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")

small_train_dataset = dataset["train"].shuffle(seed=42).select(range(1000))
small_eval_dataset = dataset["test"].shuffle(seed=42).select(range(300))

small_train_dataset = small_train_dataset.map(tokenize_function, batched=True)
small_eval_dataset = small_train_dataset.map(tokenize_function, batched=True)

# download the model
model = AutoModelForSequenceClassification.from_pretrained(
    "distilbert-base-uncased", num_labels=5
)

# set the wandb project where this run will be logged
os.environ["WANDB_PROJECT"] = "my-awesome-project"

# save your trained model checkpoint to wandb
os.environ["WANDB_LOG_MODEL"] = "true"

# turn off watch to log faster
os.environ["WANDB_WATCH"] = "false"

# pass "wandb" to the `report_to` parameter to turn on wandb logging
training_args = TrainingArguments(
    output_dir="models",
    report_to="wandb",
    logging_steps=5,
    per_device_train_batch_size=32,
    per_device_eval_batch_size=32,
    evaluation_strategy="steps",
    eval_steps=20,
    max_steps=100,
    save_steps=100,
)

# define the trainer and start training
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=small_train_dataset,
    eval_dataset=small_eval_dataset,
    compute_metrics=compute_metrics,
)
trainer.train()

# [optional] finish the wandb run, necessary in notebooks
wandb.finish()
⚡️ PyTorch Lightning

Build scalable, structured, high-performance PyTorch models with Lightning and log them with W&B.

# This script needs these libraries to be installed:
#   torch, torchvision, pytorch_lightning

import wandb

import os
from torch import optim, nn, utils
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor

import pytorch_lightning as pl
from pytorch_lightning.loggers import WandbLogger


class LitAutoEncoder(pl.LightningModule):
    def __init__(self, lr=1e-3, inp_size=28, optimizer="Adam"):
        super().__init__()

        self.encoder = nn.Sequential(
            nn.Linear(inp_size * inp_size, 64), nn.ReLU(), nn.Linear(64, 3)
        )
        self.decoder = nn.Sequential(
            nn.Linear(3, 64), nn.ReLU(), nn.Linear(64, inp_size * inp_size)
        )
        self.lr = lr

        # save hyperparameters to self.hparamsm auto-logged by wandb
        self.save_hyperparameters()

    def training_step(self, batch, batch_idx):
        x, y = batch
        x = x.view(x.size(0), -1)
        z = self.encoder(x)
        x_hat = self.decoder(z)
        loss = nn.functional.mse_loss(x_hat, x)

        # log metrics to wandb
        self.log("train_loss", loss)
        return loss

    def configure_optimizers(self):
        optimizer = optim.Adam(self.parameters(), lr=self.lr)
        return optimizer


# init the autoencoder
autoencoder = LitAutoEncoder(lr=1e-3, inp_size=28)

# setup data
batch_size = 32
dataset = MNIST(os.getcwd(), download=True, transform=ToTensor())
train_loader = utils.data.DataLoader(dataset, shuffle=True)

# initialise the wandb logger and name your wandb project
wandb_logger = WandbLogger(project="my-awesome-project")

# add your batch size to the wandb config
wandb_logger.experiment.config["batch_size"] = batch_size

# pass wandb_logger to the Trainer
trainer = pl.Trainer(limit_train_batches=750, max_epochs=5, logger=wandb_logger)

# train the model
trainer.fit(model=autoencoder, train_dataloaders=train_loader)

# [optional] finish the wandb run, necessary in notebooks
wandb.finish()
💨 XGBoost Use W&B Callbacks to automatically save metrics to W&B when you call `model.fit` during training.

The following code example demonstrates how your script might look like when you integrate W&B with XGBoost:

# This script needs these libraries to be installed:
#   numpy, xgboost

import wandb
from wandb.xgboost import WandbCallback

import numpy as np
import xgboost as xgb


# setup parameters for xgboost
param = {
    "objective": "multi:softmax",
    "eta": 0.1,
    "max_depth": 6,
    "nthread": 4,
    "num_class": 6,
}

# start a new wandb run to track this script
run = wandb.init(
    # set the wandb project where this run will be logged
    project="my-awesome-project",
    # track hyperparameters and run metadata
    config=param,
)

# download data from wandb Artifacts and prep data
run.use_artifact("wandb/intro/dermatology_data:v0", type="dataset").download(".")
data = np.loadtxt(
    "./dermatology.data",
    delimiter=",",
    converters={33: lambda x: int(x == "?"), 34: lambda x: int(x) - 1},
)
sz = data.shape

train = data[: int(sz[0] * 0.7), :]
test = data[int(sz[0] * 0.7) :, :]

train_X = train[:, :33]
train_Y = train[:, 34]

test_X = test[:, :33]
test_Y = test[:, 34]

xg_train = xgb.DMatrix(train_X, label=train_Y)
xg_test = xgb.DMatrix(test_X, label=test_Y)
watchlist = [(xg_train, "train"), (xg_test, "test")]

# add another config to the wandb run
num_round = 5
run.config["num_round"] = 5
run.config["data_shape"] = sz

# pass WandbCallback to the booster to log its configs and metrics
bst = xgb.train(
    param, xg_train, num_round, evals=watchlist, callbacks=[WandbCallback()]
)

# get prediction
pred = bst.predict(xg_test)
error_rate = np.sum(pred != test_Y) / test_Y.shape[0]

# log your test metric to wandb
run.summary["Error Rate"] = error_rate

# [optional] finish the wandb run, necessary in notebooks
run.finish()
🧮 Sci-Kit Learn Use wandb to visualize and compare your scikit-learn models' performance:
# This script needs these libraries to be installed:
#   numpy, sklearn

import wandb
from wandb.sklearn import plot_precision_recall, plot_feature_importances
from wandb.sklearn import plot_class_proportions, plot_learning_curve, plot_roc

import numpy as np
from sklearn import datasets
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split


# load and process data
wbcd = datasets.load_breast_cancer()
feature_names = wbcd.feature_names
labels = wbcd.target_names

test_size = 0.2
X_train, X_test, y_train, y_test = train_test_split(
    wbcd.data, wbcd.target, test_size=test_size
)

# train model
model = RandomForestClassifier()
model.fit(X_train, y_train)
model_params = model.get_params()

# get predictions
y_pred = model.predict(X_test)
y_probas = model.predict_proba(X_test)
importances = model.feature_importances_
indices = np.argsort(importances)[::-1]

# start a new wandb run and add your model hyperparameters
run = wandb.init(project="my-awesome-project", config=model_params)

# Add additional configs to wandb
run.config.update(
    {
        "test_size": test_size,
        "train_len": len(X_train),
        "test_len": len(X_test),
    }
)

# log additional visualisations to wandb
plot_class_proportions(y_train, y_test, labels)
plot_learning_curve(model, X_train, y_train)
plot_roc(y_test, y_probas, labels)
plot_precision_recall(y_test, y_probas, labels)
plot_feature_importances(model)

# [optional] finish the wandb run, necessary in notebooks
run.finish()

 

W&B Hosting Options

Weights & Biases is available in the cloud or installed on your private infrastructure. Set up a W&B Server in a production environment in one of three ways:

  1. Production Cloud: Set up a production deployment on a private cloud in just a few steps using terraform scripts provided by W&B.
  2. Dedicated Cloud: A managed, dedicated deployment on W&B's single-tenant infrastructure in your choice of cloud region.
  3. On-Prem/Bare Metal: W&B supports setting up a production server on most bare metal servers in your on-premise data centers. Quickly get started by running wandb server to easily start hosting W&B on your local infrastructure.

See the Hosting documentation in the W&B Developer Guide for more information.

 

Contribution guidelines

Weights & Biases ❤️ open source, and we welcome contributions from the community! See the Contribution guide for more information on the development workflow and the internals of the wandb library. For wandb bugs and feature requests, visit GitHub Issues or contact [email protected] .

 

W&B Community

Be a part of the growing W&B Community and interact with the W&B team in our Discord. Stay connected with the latest ML updates and tutorials with W&B Fully Connected.

 

License

MIT License

About

🔥 A tool for visualizing and tracking your machine learning experiments. This repo contains the CLI and Python API.

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 86.2%
  • Go 10.2%
  • Swift 2.2%
  • Rust 0.8%
  • Shell 0.3%
  • C++ 0.1%
  • Other 0.2%