-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Simplify DynapcnnLayer by removing _pool_layers attribute.
- Loading branch information
Showing
1 changed file
with
20 additions
and
50 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -2,17 +2,22 @@ | |
# contact : [email protected] | ||
|
||
from copy import deepcopy | ||
from typing import Dict, Callable, Tuple, Union, List | ||
from functools import partial | ||
from typing import Tuple, List | ||
|
||
import numpy as np | ||
import torch | ||
from torch import nn | ||
|
||
import sinabs.activation | ||
import sinabs.layers as sl | ||
|
||
from .discretize import discretize_conv_spike_ | ||
|
||
|
||
# Define sum pooling functional as power-average pooling with power 1 | ||
sum_pool2d = partial(nn.functional.lp_pool2d, norm_type=1) | ||
|
||
|
||
class DynapcnnLayer(nn.Module): | ||
"""Create a DynapcnnLayer object representing a layer on DynapCNN or Speck. | ||
|
@@ -74,15 +79,17 @@ def __init__( | |
if self._discretize: | ||
conv, spk = discretize_conv_spike_(conv, spk, to_int=False) | ||
|
||
if discretize: | ||
# int conversion is done while writing the config. | ||
conv, spk = discretize_conv_spike_(conv, spk, to_int=False) | ||
self._conv = conv | ||
self._spk = spk | ||
|
||
@property | ||
def conv(self): | ||
return self._conv | ||
|
||
self.conv = conv | ||
self.spk = spk | ||
@property | ||
def spk(self): | ||
return self._spk | ||
|
||
self._pool_lyrs = self._make_pool_layers() # creates SumPool2d layers from `pool`. | ||
|
||
@property | ||
def pool(self): | ||
return self._pool | ||
|
@@ -101,7 +108,7 @@ def conv_out_shape(self): | |
|
||
####################################################### Public Methods ####################################################### | ||
|
||
def forward(self, x): | ||
def forward(self, x) -> List[torch.Tensor]: | ||
"""Torch forward pass. | ||
... | ||
|
@@ -113,12 +120,13 @@ def forward(self, x): | |
x = self.spk(x) | ||
|
||
for pool in self._pool: | ||
|
||
if pool == 1: | ||
# no pooling is applied. | ||
returns.append(x) | ||
else: | ||
# sum pooling of `(pool, pool)` is applied. | ||
pool_out = self._pool_lyrs[pool](x) | ||
pool_out = sum_pool2d(x, kernel_size=pool) | ||
returns.append(pool_out) | ||
|
||
return tuple(returns) | ||
|
@@ -212,41 +220,6 @@ def _convert_linear_to_conv(self, lin: nn.Linear, layer_data: dict) -> Tuple[nn. | |
) | ||
|
||
return layer, input_shape | ||
|
||
def _make_pool_layers(self) -> Dict[int, sl.SumPool2d]: | ||
""" Creates a `sl.SumPool2d` for each entry in `self._pool` greater than one. | ||
Note: the "kernel size" (values > 1) in self._pool is by default used to set the stride of the pooling layer. | ||
Returns | ||
------- | ||
- pool_lyrs (dict): the `key` is a value grather than 1 in `self._pool`, with the `value` being the `sl.SumPool2d` it represents. | ||
""" | ||
|
||
pool_lyrs = {} | ||
|
||
# validating if pool are integers | ||
for item in self._pool: | ||
if not isinstance(item, int): | ||
raise ValueError(f"Item '{item}' in `pool` is not an integer.") | ||
|
||
# create layers form pool list. | ||
for kernel_s in self._pool: | ||
|
||
if kernel_s != 1: | ||
|
||
pooling = (kernel_s, kernel_s) | ||
|
||
# compute cumulative pooling. | ||
cumulative_pooling = ( | ||
cumulative_pooling[0] * pooling[0], | ||
cumulative_pooling[1] * pooling[1], | ||
) | ||
|
||
# create SumPool2d layer. | ||
pool_lyrs[kernel_s] = sl.SumPool2d(cumulative_pooling) | ||
|
||
return pool_lyrs | ||
|
||
def _get_conv_output_shape(self) -> Tuple[int, int, int]: | ||
""" Computes the output dimensions of `conv_layer`. | ||
|
@@ -257,10 +230,7 @@ def _get_conv_output_shape(self) -> Tuple[int, int, int]: | |
""" | ||
# get the layer's parameters. | ||
|
||
spk = deepcopy() | ||
out_channels = self.conv.out_channels | ||
|
||
spk = deepcopy() | ||
kernel_size = self.conv.kernel_size | ||
stride = self.conv.stride | ||
padding = self.conv.padding | ||
|
@@ -270,4 +240,4 @@ def _get_conv_output_shape(self) -> Tuple[int, int, int]: | |
out_height = ((self.in_shape[1] + 2 * padding[0] - dilation[0] * (kernel_size[0] - 1) - 1) // stride[0]) + 1 | ||
out_width = ((self.in_shape[2] + 2 * padding[1] - dilation[1] * (kernel_size[1] - 1) - 1) // stride[1]) + 1 | ||
|
||
return (out_channels, out_height, out_width) | ||
return (out_channels, out_height, out_width) |