Skip to content
This repository has been archived by the owner on Jun 30, 2024. It is now read-only.

szacho/augmix-tf

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

14 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

augmix-tf

NOTE: this implementation is no longer supported, you can use keras-team/keras-cv#407 as a replacement (it's based on this repo).

Augmix-tf is an implementation of novel data augmentation AugMix (2020) in TensorFlow. It runs on TPU.

AugMix utilizes simple augmentation operations which are stochastically sampled and layered to produce a high diversity of augmented images. The process of mixing basic tranformations into augmented image is shown below (picture taken from the original paper). This augmentation performs better when used in concert with Jensen-Shannon Divergence Consistency Loss. AugMix pipeline

Installation

pip install augmix-tf

Usage

AugMix

The main function, which does the augmentation is AugMix.transform, let's print a docstring of it.

from augmix import AugMix
print(AugMix.transform.__doc__)
	Performs AugMix data augmentation on given image.

	Parameters:
	image (tf tensor): an image tensor with shape (x, x, 3) and values scaled to range [0, 1]
	severity (int): level of a strength of transformations (integer from 1 to 10)
	width (int): number of different chains of transformations to be mixed
	depth (int): number of transformations in one chain, -1 means random from 1 to 3

	Returns:
	tensor: augmented image

Example 1 - transforming a single image

from PIL import Image
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from augmix import AugMix

# precalculated means and stds of the dataset (in RGB order)
means = [0.44892993872313053, 0.4148519066242368, 0.301880284715257]
stds = [0.24393544875614917, 0.2108791383467354, 0.220427056859487]
ag = AugMix(means, stds)

# preprocess
image = np.asarray(Image.open('geranium.jpg'))
image = tf.convert_to_tensor(image)
image = tf.cast(image, dtype=tf.float32)
image = tf.image.resize(image, (331, 331)) # resize to square
image /=  255  # scale to [0, 1]

# augment
augmented = ag.transform(image)

# visualize
comparison = tf.concat([image, augmented], axis=1)
plt.imshow(comparison.numpy())
plt.title("Original image (left) and augmented image (right).")
plt.show()

result of example 1)

Example 2 - transforming a dataset of images

# here a dataset is a tf.data.Dataset object
# assuming images are properly preprocessed (see example 1)
dataset = dataset.map(lambda  img: ag.transform(img))

Example 3 - transforming a dataset to use with the Jensen-Shannon loss

# here a dataset is a tf.data.Dataset object
# assuming images are properly preprocessed (see example 1)
dataset = dataset.map(lambda  img: (img, ag.transform(img), ag.transform(img)))

Visualization

AugMix

original images original images

augmented visualization of augmix

Simple transformations

AugMix mixes images transformed by simple augmentations defined in transformations.py file. Every transformation function takes an image and level parameter that determines a strength of this transformation. This level parameter has the same value as severity parameter in AugMix.transform function, so again it is the integer between 1 and 10, where 10 means the strongest augmentation. These functions can be used by itself. Below is a visualization what every simple augmentation does to a batch of images (at level 10).

translate_x, translate_y translate

rotate rotate

shear_x, shear_y shear

solarize solarize

solarize_add solarize add

posterize posterize

autocontrast autocontrast

contrast contrast

equalize equalize

brightness brightness

color color

More information

TODO

  • batch implementation of AugMix
  • possibility to choose basic transformations easily
  • appendix
    • calculation of mean and standard devation on a dataset
    • implementation of Jensen-Shannon Divergence Consistency Loss

License

MIT

About

Implementation of AugMix (2020) in TensorFlow

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages