Skip to content

taomrzhang/des

 
 

Repository files navigation


Results on VOC

System VOC2007 test mAP VOC2012 test mAP VOC2007 test mAP trained with COCO VOC2012 test mAP trained with COCO
SSD300* (VGG16) 77.2 75.8 81.2 79.3
SSD512* (VGG16) 79.8 78.5 83.2 82.2
DES300 (VGG16) 79.7 77.1 82.7 81.0
DES512 (VGG16) 81.7 80.3 84.3 83.7

Results on COCO

System 0.5:0.95 0.5 0.75
SSD300* (VGG16) 25.1 43.1 25.8
SSD512* (VGG16) 28.8 48.5 30.3
DES300 (VGG16) 28.3 47.3 29.4
DES512 (VGG16) 32.8 53.2 34.6

Citing DES

Please cite DES in your publications if it helps your research:

@inproceedings{zhang2018single,
  title = {Single-Shot Object Detection with Enriched Semantics},
  author = {Zhang, Zhishuai and Qiao, Siyuan and Xie, Cihang and Shen, Wei and Wang, Bo and Yuille, Alan L.},
  booktitle = {CVPR},
  year = {2018}
}

Trained Models

  1. VOC07
  1. VOC12
  1. COCO

Installation and Preparation

  1. Clone the code.

  2. Build the code. Please follow Caffe instruction to install all necessary packages and build it.

# Modify Makefile.config according to your Caffe installation.
cp Makefile.config.example Makefile.config
make -j8
# Make sure to include $CAFFE_ROOT/python to your PYTHONPATH.
make py
make test -j8
# (Optional)
make runtest -j8
  1. Download VOC2007 and VOC2012 dataset. By default, we assume the data is stored in $HOME/data/
# Download the data.
cd $HOME/data
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
# Extract the data.
tar -xvf VOCtrainval_11-May-2012.tar
tar -xvf VOCtrainval_06-Nov-2007.tar
tar -xvf VOCtest_06-Nov-2007.tar
  1. Create the LMDB file.
cd $CAFFE_ROOT
# Create the trainval.txt, test.txt, and test_name_size.txt in data/VOC0712/
./data/VOC0712/create_list.sh
# You can modify the parameters in create_data.sh if needed.
# It will create lmdb files for trainval and test with encoded original image:
#   - $HOME/data/VOCdevkit/VOC0712/lmdb/VOC0712_trainval_lmdb
#   - $HOME/data/VOCdevkit/VOC0712/lmdb/VOC0712_test_lmdb
# and make soft links at examples/VOC0712/
./data/VOC0712/create_data.sh

Train/Eval

All .sh files in jobs folder are for training or evaluation. For training, use the models in initial_models to initialize weights. For evaluation, use the model links above to initialize weights.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 79.7%
  • Python 9.9%
  • Cuda 6.1%
  • CMake 2.3%
  • MATLAB 0.7%
  • Makefile 0.6%
  • Other 0.7%