-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathyolo_eval.py
352 lines (304 loc) · 14.8 KB
/
yolo_eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
#! /usr/bin/env python
# -*- coding: utf-8 -*-
"""
Run a YOLO_v3 style detection model on test images.
"""
import colorsys
import os
from timeit import default_timer as timer
from tqdm import tqdm
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
config = tf.ConfigProto()
config.gpu_options.per_process_gpu_memory_fraction = 0.3
set_session(tf.Session(config=config))
import numpy as np
from keras import backend as K
from keras.models import load_model, Model
from keras.layers import Input
from PIL import Image, ImageFont, ImageDraw
from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body, tiny_yolo_infusion_body, infusion_layer, yolo_infusion_body, tiny_yolo_infusion_hydra_body
from yolo3.utils import letterbox_image
import os,datetime
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
from keras.utils import multi_gpu_model
gpu_num=1
ggclasses = ["aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"]
import argparse
import yaml
ap = argparse.ArgumentParser()
ap.add_argument("-g", "--config_path",
required=True,
default=None,
type=str,
help="The training configuration.")
ap.add_argument("-w", "--weights",
required=False,
default=None,
type=str,
help="The weights to load the model. If not provided the trained_weights_final.h5 will be used from the logs dir.")
ap.add_argument("-a", "--generate_all",
required=False,
action='store_true',
help="Request the script to generate all output formats.")
ARGS = ap.parse_args()
train_config = None
with open(ARGS.config_path, 'r') as stream:
train_config = yaml.load(stream)
print(train_config)
if not train_config['log_dir'] in ARGS.weights:
raise Exception('Wrong setup: log_dir <-> weights')
output_version = datetime.datetime.now().strftime('%Y%m%d%H%M%S')
#infer_logdir_epochs_dataset_outputversion
output_path = 'infer_{}_{}_{}_{}_{}_{}'.format(
train_config['log_dir'].replace('/',''),
os.path.basename(ARGS.weights).split('-')[0], #[ep022]-loss5.235-val_loss5.453.h5
train_config['dataset_name'],
train_config['model_name'],
train_config['short_comment'] if train_config['short_comment'] else '',
output_version,
)
class YOLO(object):
def __init__(self):
self.model_name = train_config['model_name']
# self.model_path = 'model_data/yolo.h5' # model path or trained weights path
# self.model_path = 'logs/000_5epochs/trained_weights_final.h5'
self.model_path = ARGS.weights
# self.model_path = 'logs/001/trained_weights_final.h5'
print(self.model_path)
# self.anchors_path = 'model_data/yolo_anchors.txt'
self.classes_path = train_config['classes_path']
# self.classes_path = 'model_data/coco_classes.txt'
self.anchors_path = train_config['anchors_path']
self.score = 0.3
self.iou = 0.45
self.class_names = self._get_class()
self.anchors = self._get_anchors()
self.sess = K.get_session()
self.model_image_size = (416, 416) # fixed size or (None, None), hw
# self.model_image_size = (480,640) # fixed size or (None, None), hw
self.boxes, self.scores, self.classes = self.generate()
def _get_class(self):
classes_path = os.path.expanduser(self.classes_path)
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def _get_anchors(self):
anchors_path = os.path.expanduser(self.anchors_path)
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape(-1, 2)
def generate(self):
model_path = os.path.expanduser(self.model_path)
assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
# Load model, or construct model and load weights.
num_anchors = len(self.anchors)
num_classes = len(self.class_names)
is_tiny_version = num_anchors==6 # default setting
if self.model_name == 'tiny_yolo_infusion':
print('Loading model weights', self.model_path)
#old style
# self.yolo_model = tiny_yolo_infusion_body(Input(shape=(None,None,3)), num_anchors//2, num_classes)
# self.yolo_model.load_weights(self.model_path, by_name=True)
#new style
yolo_model, connection_layer = tiny_yolo_infusion_body(Input(shape=(None,None,3)), num_anchors//2, num_classes)
seg_output = infusion_layer(connection_layer)
self.yolo_model = Model(inputs=yolo_model.input, outputs=[*yolo_model.output, seg_output])
self.yolo_model.load_weights(self.model_path, by_name=True)
elif self.model_name == 'tiny_yolo_infusion_hydra':
#old style
# self.yolo_model = tiny_yolo_infusion_hydra_body(Input(shape=(None,None,3)), num_anchors//2, num_classes)
# self.yolo_model.load_weights(self.model_path, by_name=True)
#new style
#not implemented yet
pass
elif self.model_name == 'yolo_infusion':
print('Loading model weights', self.model_path)
yolo_model, seg_output = yolo_infusion_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
self.yolo_model = Model(inputs=yolo_model.input, outputs=[*yolo_model.output, seg_output])
self.yolo_model.load_weights(self.model_path, by_name=True)
else:
try:
self.yolo_model = load_model(model_path, compile=False)
except:
self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
else:
assert self.yolo_model.layers[-1].output_shape[-1] == \
num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
'Mismatch between model and given anchor and class sizes'
print('{} model, anchors, and classes loaded.'.format(model_path))
# Generate colors for drawing bounding boxes.
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
np.random.seed(10101) # Fixed seed for consistent colors across runs.
np.random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes.
np.random.seed(None) # Reset seed to default.
# Generate output tensor targets for filtered bounding boxes.
self.input_image_shape = K.placeholder(shape=(2, ))
if gpu_num>=2:
self.yolo_model = multi_gpu_model(self.yolo_model, gpus=gpu_num)
boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
len(self.class_names), self.input_image_shape,
score_threshold=self.score, iou_threshold=self.iou, model_name=self.model_name)
return boxes, scores, classes
def detect_image(self, image, verbose=False, draw=False, output_file=None):
start = timer()
if self.model_image_size != (None, None):
assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required'
assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required'
boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))
else:
new_image_size = (image.width - (image.width % 32),
image.height - (image.height % 32))
boxed_image = letterbox_image(image, new_image_size)
image_data = np.array(boxed_image, dtype='float32')
# print(image_data.shape)
image_data /= 255.
image_data = np.expand_dims(image_data, 0) # Add batch dimension.
out_boxes, out_scores, out_classes = self.sess.run(
[self.boxes, self.scores, self.classes],
feed_dict={
self.yolo_model.input: image_data,
self.input_image_shape: [image.size[1], image.size[0]],
K.learning_phase(): 0
})
if verbose:
print('Found {} boxes for {}'.format(len(out_boxes), 'img'))
if draw:
font = ImageFont.truetype(font='font/FiraMono-Medium.otf',
size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
thickness = (image.size[0] + image.size[1]) // 300
detections = []
for i, c in reversed(list(enumerate(out_classes))):
predicted_class = self.class_names[c]
box = out_boxes[i]
score = out_scores[i]
if draw:
label = '{} {:.2f}'.format(predicted_class, score)
draw = ImageDraw.Draw(image)
label_size = draw.textsize(label, font)
top, left, bottom, right = box
top = max(0, np.floor(top + 0.5).astype('int32'))
left = max(0, np.floor(left + 0.5).astype('int32'))
bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
right = min(image.size[0], np.floor(right + 0.5).astype('int32'))
if verbose:
print(label, (left, top), (right, bottom))
if draw:
if top - label_size[1] >= 0:
text_origin = np.array([left, top - label_size[1]])
else:
text_origin = np.array([left, top + 1])
# My kingdom for a good redistributable image drawing library.
for i in range(thickness):
draw.rectangle(
[left + i, top + i, right - i, bottom - i],
outline=self.colors[c])
draw.rectangle(
[tuple(text_origin), tuple(text_origin + label_size)],
fill=self.colors[c])
draw.text(text_origin, label, fill=(0, 0, 0), font=font)
del draw
# <left> <top> <right> <bottom> <class_id> <confidence>
detections.append([left, top, right, bottom, c, score])
end = timer()
if verbose:
print('Executed in: ', end - start)
return image, detections
def close_session(self):
self.sess.close()
def detect_video(yolo, video_path, output_path=""):
import cv2
vid = cv2.VideoCapture(video_path)
if not vid.isOpened():
raise IOError("Couldn't open webcam or video")
video_FourCC = int(vid.get(cv2.CAP_PROP_FOURCC))
video_fps = vid.get(cv2.CAP_PROP_FPS)
video_size = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)))
isOutput = True if output_path != "" else False
if isOutput:
print("!!! TYPE:", type(output_path), type(video_FourCC), type(video_fps), type(video_size))
out = cv2.VideoWriter(output_path, video_FourCC, video_fps, video_size)
accum_time = 0
curr_fps = 0
fps = "FPS: ??"
prev_time = timer()
while True:
return_value, frame = vid.read()
image = Image.fromarray(frame)
image = yolo.detect_image(image)
result = np.asarray(image)
curr_time = timer()
exec_time = curr_time - prev_time
prev_time = curr_time
accum_time = accum_time + exec_time
curr_fps = curr_fps + 1
if accum_time > 1:
accum_time = accum_time - 1
fps = "FPS: " + str(curr_fps)
curr_fps = 0
cv2.putText(result, text=fps, org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=0.50, color=(255, 0, 0), thickness=2)
cv2.namedWindow("result", cv2.WINDOW_NORMAL)
cv2.imshow("result", result)
if isOutput:
out.write(result)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
yolo.close_session()
def detect_img(yolo):
result_detections = []
result_images = []
test_annotations = train_config['test_path']
with open(test_annotations,'r') as annot_f:
for annotation in tqdm(annot_f):
try:
# print(annotation)
# image = Image.open('/home/grvaliati/workspace/datasets/pti/PTI01/C_BLC03-02/0/18/01/08/16/57/18/00150-capture.jpg')
img_path = annotation.split(' ')[0].strip()
# print('img_path',img_path)
image = Image.open(img_path)
except Exception as e:
print('Error while opening file.', e)
break;
else:
r_image, detections = yolo.detect_image(image)
result_images.append(r_image.filename)
result_detections.append(detections)
# print(detections)
# r_image.show()
# r_image.save('img_seg_test.jpg')
print('Saving results for ',train_config['dataset_name'])
print('Saving in ', output_path)
annot_dir = './result'
os.makedirs('./result', exist_ok=True)
for index, image_filename in enumerate(result_images):
#image_filename /absolute/path/set00_V000_662.jpg
image_name = os.path.basename(image_filename) #set00_V000_662.jpg
file_name = image_name.replace('.jpg', '.txt')
# path_elements = image_name.replace('.jpg','').split('_')
# annot_dir = os.path.join(path_elements[0],path_elements[1])
# annot_dir = os.path.join(output_path,annot_dir)
#annot file format -> "I00029.txt"
# annot_name = 'I{}.txt'.format(path_elements[2].zfill(5))
annot_filename = os.path.join(annot_dir, file_name)
with open(annot_filename, 'w') as output_f:
for d in result_detections[index]:
#caltech evaluation format -> "[left, top, width, height, score]".
left, top, right, bottom, class_id, score = d[0], d[1], d[2], d[3], d[4], d[5]
# width = right - left
# height = botton - top
# output_f.write('{} {} {} {} {} {}\n'.format(ggclasses[class_id],score,left,top,right,bottom))
output_f.write('{} {} {} {} {} {}\n'.format('person',score,left,top,right,bottom))
yolo.close_session()
if __name__ == '__main__':
detect_img(YOLO())