Skip to content

Commit

Permalink
Merge pull request #251 from torchmd/guillemsimeon-patch-1
Browse files Browse the repository at this point in the history
Update README.md
  • Loading branch information
RaulPPelaez authored Jan 17, 2024
2 parents ad1adfc + 0ddd550 commit b1f2f5a
Show file tree
Hide file tree
Showing 4 changed files with 52 additions and 37 deletions.
32 changes: 18 additions & 14 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -99,26 +99,30 @@ url={https://openreview.net/forum?id=zNHzqZ9wrRB}
#### Graph Network

```
@misc{majewski2022machine,
title={Machine Learning Coarse-Grained Potentials of Protein Thermodynamics},
author={Maciej Majewski and Adrià Pérez and Philipp Thölke and Stefan Doerr and Nicholas E. Charron and Toni Giorgino and Brooke E. Husic and Cecilia Clementi and Frank Noé and Gianni De Fabritiis},
year={2022},
eprint={2212.07492},
archivePrefix={arXiv},
primaryClass={q-bio.BM}
@article{Majewski2023,
title = {Machine learning coarse-grained potentials of protein thermodynamics},
volume = {14},
ISSN = {2041-1723},
url = {http://dx.doi.org/10.1038/s41467-023-41343-1},
DOI = {10.1038/s41467-023-41343-1},
number = {1},
journal = {Nature Communications},
publisher = {Springer Science and Business Media LLC},
author = {Majewski, Maciej and Pérez, Adrià and Th\"{o}lke, Philipp and Doerr, Stefan and Charron, Nicholas E. and Giorgino, Toni and Husic, Brooke E. and Clementi, Cecilia and Noé, Frank and De Fabritiis, Gianni},
year = {2023},
month = sep
}
```

#### TensorNet

```
@misc{simeon2023tensornet,
title={TensorNet: Cartesian Tensor Representations for Efficient Learning of Molecular Potentials},
author={Guillem Simeon and Gianni de Fabritiis},
year={2023},
eprint={2306.06482},
archivePrefix={arXiv},
primaryClass={cs.LG}
@inproceedings{simeon2023tensornet,
title={TensorNet: Cartesian Tensor Representations for Efficient Learning of Molecular Potentials},
author={Guillem Simeon and Gianni De Fabritiis},
booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
year={2023},
url={https://openreview.net/forum?id=BEHlPdBZ2e}
}
```

Expand Down
48 changes: 27 additions & 21 deletions docs/source/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -15,40 +15,46 @@ Main reference
.. code-block:: bibtex
@inproceedings{
tholke2021equivariant,
title={Equivariant Transformers for Neural Network based Molecular Potentials},
author={Philipp Th{\"o}lke and Gianni De Fabritiis},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=zNHzqZ9wrRB}
tholke2021equivariant,
title={Equivariant Transformers for Neural Network based Molecular Potentials},
author={Philipp Th{\"o}lke and Gianni De Fabritiis},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=zNHzqZ9wrRB}
}
Graph Network
~~~~~~~~~~~~~

.. code-block:: bibtex
@misc{majewski2022machine,
title={Machine Learning Coarse-Grained Potentials of Protein Thermodynamics},
author={Maciej Majewski and Adrià Pérez and Philipp Thölke and Stefan Doerr and Nicholas E. Charron and Toni Giorgino and Brooke E. Husic and Cecilia Clementi and Frank Noé and Gianni De Fabritiis},
year={2022},
eprint={2212.07492},
archivePrefix={arXiv},
primaryClass={q-bio.BM}
}
@article{Majewski2023,
title = {Machine learning coarse-grained potentials of protein thermodynamics},
volume = {14},
ISSN = {2041-1723},
url = {http://dx.doi.org/10.1038/s41467-023-41343-1},
DOI = {10.1038/s41467-023-41343-1},
number = {1},
journal = {Nature Communications},
publisher = {Springer Science and Business Media LLC},
author = {Majewski, Maciej and Pérez, Adrià and Th\"{o}lke, Philipp and Doerr, Stefan and Charron, Nicholas E. and Giorgino, Toni and Husic, Brooke E. and Clementi, Cecilia and Noé, Frank and De Fabritiis, Gianni},
year = {2023},
month = sep
}
TensorNet
~~~~~~~~~

.. code-block:: bibtex
@misc{simeon2023tensornet,
title={TensorNet: Cartesian Tensor Representations for Efficient Learning of Molecular Potentials},
author={Guillem Simeon and Gianni de Fabritiis},
year={2023},
eprint={2306.06482},
archivePrefix={arXiv},
primaryClass={cs.LG}
@inproceedings{
simeon2023tensornet,
title={TensorNet: Cartesian Tensor Representations for Efficient Learning of Molecular Potentials},
author={Guillem Simeon and Gianni De Fabritiis},
booktitle={Thirty-seventh Conference on Neural Information Processing Systems},
year={2023},
url={https://openreview.net/forum?id=BEHlPdBZ2e}
}
Expand Down
4 changes: 3 additions & 1 deletion torchmdnet/models/torchmd_et.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,9 @@


class TorchMD_ET(nn.Module):
r"""The TorchMD equivariant Transformer architecture.
r"""Equivariant Transformer's architecture. From
Equivariant Transformers for Neural Network based Molecular Potentials; P. Tholke and G. de Fabritiis.
ICLR 2022.
This function optionally supports periodic boundary conditions with arbitrary triclinic boxes.
For a given cutoff, :math:`r_c`, the box vectors :math:`\vec{a},\vec{b},\vec{c}` must satisfy
Expand Down
5 changes: 4 additions & 1 deletion torchmdnet/models/torchmd_gn.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,8 +16,11 @@


class TorchMD_GN(nn.Module):
r"""The TorchMD Graph Network architecture.
r"""Graph Network architecture.
Code adapted from https://github.com/rusty1s/pytorch_geometric/blob/d7d8e5e2edada182d820bbb1eec5f016f50db1e0/torch_geometric/nn/models/schnet.py#L38
and used at
Machine learning coarse-grained potentials of protein thermodynamics; M. Majewski et al.
Nature Communications (2023)
.. math::
\mathbf{x}^{\prime}_i = \sum_{j \in \mathcal{N}(i)} \mathbf{x}_j \odot
Expand Down

0 comments on commit b1f2f5a

Please sign in to comment.