Create data repositories using kerchunk
.
required dependencies:
- kerchunk
- ujson
- h5py
- zarr
- fsspec
- dask
- rich
- typer
optional dependencies:
- zstandard
- distributed
- intake
- intake-xarray
Create your conda enviroment with following command;
conda create -c conda-forge -n auto-kerchunk python=3.9
conda install -c conda-forge -n auto-kerchunk mamba
conda activate auto-kerchunk
mamba install xarray kerchunk ujson h5py zarr fsspec dask rich typer zstandard intake intake-xarray -c conda-forge
Then install auto-kerchunk to your enviroment as; ATT: use your extranet login instead of to1efa9
python -m pip install dask-hpcconfig
python -m pip install git+https://[email protected]/iaocea/auto-kerchunk.git
If you use auto-kerchunk from jupyterlab, and want to install the kernel,
ipython kernel install --user --name=auto-kerchunk --display-name=auto-kerchunk
Simplest way to use auto-kerchunk is to use pbs submitting script. First copy the example.
cp examples/auto_kerchunk.pbs
cat auto_kerchunk.pbs |grep -i marc
FILES="file:///home/ref-marc/f1_e2500_agrif/MARC_F1-MARS3D-SEINE/best_estimate/*/*Z.nc"
NAME="marc_f1_2500_agrif_seine_hourly"
Then update the enviroment variable 'FILES' as path to your original netcdf data sets and 'NAME' as the name you would like to call the catalogue.
You can observe how your computation is going on with dask. To do so you can start a jupyterlab on datarmor with a
dask-dashboard extension, start one terminal, then execute auto-chunk as follows.
TMP=$TMPDIR/JSONS
FILES="file:///home/ref-marc/f1_e2500_agrif/MARC_F1-MARS3D-SEINE/best_estimate/*/*Z.nc"
NAME="marc_f1_2500_agrif_seine_hourly"
CATALOGNAME=$NAME
RESULT="/home/datawork-lops-iaocea/catalog/kerchunk/"$NAME".json.zst"
INTAKE="file:///home/datawork-lops-iaocea/catalog/intake/"$NAME".yaml"
python -m auto_kerchunk --workers 14 single-hdf5-to-zarr $FILES $TMP
python -m auto_kerchunk --workers 14 multi-zarr-to-zarr --compression zstd "file://$TMP/*.json" $RESULT
python -m auto_kerchunk create-intake --catalog-name $CATALOGNAME --name $NAME "file://$RESULT" $INTAKE