-
Notifications
You must be signed in to change notification settings - Fork 7
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
dab7b13
commit 7dd2e02
Showing
1 changed file
with
4 additions
and
300 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,304 +1,8 @@ | ||
<div align="center"> | ||
<p> | ||
<a align="left" href="https://ultralytics.com/yolov5" target="_blank"> | ||
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/splash.jpg"></a> | ||
</p> | ||
<br> | ||
<div> | ||
<a href="https://github.com/ultralytics/yolov5/actions"><img src="https://github.com/ultralytics/yolov5/workflows/CI%20CPU%20testing/badge.svg" alt="CI CPU testing"></a> | ||
<a href="https://zenodo.org/badge/latestdoi/264818686"><img src="https://zenodo.org/badge/264818686.svg" alt="YOLOv5 Citation"></a> | ||
<a href="https://hub.docker.com/r/ultralytics/yolov5"><img src="https://img.shields.io/docker/pulls/ultralytics/yolov5?logo=docker" alt="Docker Pulls"></a> | ||
<br> | ||
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> | ||
<a href="https://www.kaggle.com/ultralytics/yolov5"><img src="https://kaggle.com/static/images/open-in-kaggle.svg" alt="Open In Kaggle"></a> | ||
<a href="https://join.slack.com/t/ultralytics/shared_invite/zt-w29ei8bp-jczz7QYUmDtgo6r6KcMIAg"><img src="https://img.shields.io/badge/Slack-Join_Forum-blue.svg?logo=slack" alt="Join Forum"></a> | ||
</div> | ||
Monocular ranging | ||
|
||
<br> | ||
<p> | ||
YOLOv5 🚀 is a family of object detection architectures and models pretrained on the COCO dataset, and represents <a href="https://ultralytics.com">Ultralytics</a> | ||
open-source research into future vision AI methods, incorporating lessons learned and best practices evolved over thousands of hours of research and development. | ||
</p> | ||
1.run detect.py | ||
|
||
<div align="center"> | ||
<a href="https://github.com/ultralytics"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="2%"/> | ||
</a> | ||
<img width="2%" /> | ||
<a href="https://www.linkedin.com/company/ultralytics"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="2%"/> | ||
</a> | ||
<img width="2%" /> | ||
<a href="https://twitter.com/ultralytics"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="2%"/> | ||
</a> | ||
<img width="2%" /> | ||
<a href="https://www.producthunt.com/@glenn_jocher"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="2%"/> | ||
</a> | ||
<img width="2%" /> | ||
<a href="https://youtube.com/ultralytics"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="2%"/> | ||
</a> | ||
<img width="2%" /> | ||
<a href="https://www.facebook.com/ultralytics"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="2%"/> | ||
</a> | ||
<img width="2%" /> | ||
<a href="https://www.instagram.com/ultralytics/"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="2%"/> | ||
</a> | ||
</div> | ||
2.CSDN blog address:https://blog.csdn.net/qq_45077760 | ||
|
||
<!-- | ||
<a align="center" href="https://ultralytics.com/yolov5" target="_blank"> | ||
<img width="800" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-api.png"></a> | ||
--> | ||
If you have any questions, please contact me through my blog | ||
|
||
</div> | ||
|
||
## <div align="center">Documentation</div> | ||
|
||
See the [YOLOv5 Docs](https://docs.ultralytics.com) for full documentation on training, testing and deployment. | ||
|
||
## <div align="center">Quick Start Examples</div> | ||
|
||
<details open> | ||
<summary>Install</summary> | ||
|
||
Clone repo and install [requirements.txt](https://github.com/ultralytics/yolov5/blob/master/requirements.txt) in a | ||
[**Python>=3.7.0**](https://www.python.org/) environment, including | ||
[**PyTorch>=1.7**](https://pytorch.org/get-started/locally/). | ||
|
||
```bash | ||
git clone https://github.com/ultralytics/yolov5 # clone | ||
cd yolov5 | ||
pip install -r requirements.txt # install | ||
``` | ||
|
||
</details> | ||
|
||
<details open> | ||
<summary>Inference</summary> | ||
|
||
Inference with YOLOv5 and [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) | ||
. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest | ||
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). | ||
|
||
```python | ||
import torch | ||
|
||
# Model | ||
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') # or yolov5m, yolov5l, yolov5x, custom | ||
|
||
# Images | ||
img = 'https://ultralytics.com/images/zidane.jpg' # or file, Path, PIL, OpenCV, numpy, list | ||
|
||
# Inference | ||
results = model(img) | ||
|
||
# Results | ||
results.print() # or .show(), .save(), .crop(), .pandas(), etc. | ||
``` | ||
|
||
</details> | ||
|
||
|
||
|
||
<details> | ||
<summary>Inference with detect.py</summary> | ||
|
||
`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from | ||
the latest YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`. | ||
|
||
```bash | ||
python detect.py --source 0 # webcam | ||
img.jpg # image | ||
vid.mp4 # video | ||
path/ # directory | ||
path/*.jpg # glob | ||
'https://youtu.be/Zgi9g1ksQHc' # YouTube | ||
'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP stream | ||
``` | ||
|
||
</details> | ||
|
||
<details> | ||
<summary>Training</summary> | ||
|
||
The commands below reproduce YOLOv5 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) | ||
results. [Models](https://github.com/ultralytics/yolov5/tree/master/models) | ||
and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest | ||
YOLOv5 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are | ||
1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://github.com/ultralytics/yolov5/issues/475) times faster). Use the | ||
largest `--batch-size` possible, or pass `--batch-size -1` for | ||
YOLOv5 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB. | ||
|
||
```bash | ||
python train.py --data coco.yaml --cfg yolov5n.yaml --weights '' --batch-size 128 | ||
yolov5s 64 | ||
yolov5m 40 | ||
yolov5l 24 | ||
yolov5x 16 | ||
``` | ||
|
||
<img width="800" src="https://user-images.githubusercontent.com/26833433/90222759-949d8800-ddc1-11ea-9fa1-1c97eed2b963.png"> | ||
|
||
</details> | ||
|
||
<details open> | ||
<summary>Tutorials</summary> | ||
|
||
* [Train Custom Data](https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data) 🚀 RECOMMENDED | ||
* [Tips for Best Training Results](https://github.com/ultralytics/yolov5/wiki/Tips-for-Best-Training-Results) ☘️ | ||
RECOMMENDED | ||
* [Weights & Biases Logging](https://github.com/ultralytics/yolov5/issues/1289) 🌟 NEW | ||
* [Roboflow for Datasets, Labeling, and Active Learning](https://github.com/ultralytics/yolov5/issues/4975) 🌟 NEW | ||
* [Multi-GPU Training](https://github.com/ultralytics/yolov5/issues/475) | ||
* [PyTorch Hub](https://github.com/ultralytics/yolov5/issues/36) ⭐ NEW | ||
* [TFLite, ONNX, CoreML, TensorRT Export](https://github.com/ultralytics/yolov5/issues/251) 🚀 | ||
* [Test-Time Augmentation (TTA)](https://github.com/ultralytics/yolov5/issues/303) | ||
* [Model Ensembling](https://github.com/ultralytics/yolov5/issues/318) | ||
* [Model Pruning/Sparsity](https://github.com/ultralytics/yolov5/issues/304) | ||
* [Hyperparameter Evolution](https://github.com/ultralytics/yolov5/issues/607) | ||
* [Transfer Learning with Frozen Layers](https://github.com/ultralytics/yolov5/issues/1314) ⭐ NEW | ||
* [TensorRT Deployment](https://github.com/wang-xinyu/tensorrtx) | ||
|
||
</details> | ||
|
||
## <div align="center">Environments</div> | ||
|
||
Get started in seconds with our verified environments. Click each icon below for details. | ||
|
||
<div align="center"> | ||
<a href="https://colab.research.google.com/github/ultralytics/yolov5/blob/master/tutorial.ipynb"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-colab-small.png" width="15%"/> | ||
</a> | ||
<a href="https://www.kaggle.com/ultralytics/yolov5"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-kaggle-small.png" width="15%"/> | ||
</a> | ||
<a href="https://hub.docker.com/r/ultralytics/yolov5"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-docker-small.png" width="15%"/> | ||
</a> | ||
<a href="https://github.com/ultralytics/yolov5/wiki/AWS-Quickstart"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-aws-small.png" width="15%"/> | ||
</a> | ||
<a href="https://github.com/ultralytics/yolov5/wiki/GCP-Quickstart"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-gcp-small.png" width="15%"/> | ||
</a> | ||
</div> | ||
|
||
## <div align="center">Integrations</div> | ||
|
||
<div align="center"> | ||
<a href="https://wandb.ai/site?utm_campaign=repo_yolo_readme"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-wb-long.png" width="49%"/> | ||
</a> | ||
<a href="https://roboflow.com/?ref=ultralytics"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-roboflow-long.png" width="49%"/> | ||
</a> | ||
</div> | ||
|
||
|Weights and Biases|Roboflow ⭐ NEW| | ||
|:-:|:-:| | ||
|Automatically track and visualize all your YOLOv5 training runs in the cloud with [Weights & Biases](https://wandb.ai/site?utm_campaign=repo_yolo_readme)|Label and export your custom datasets directly to YOLOv5 for training with [Roboflow](https://roboflow.com/?ref=ultralytics) | | ||
|
||
|
||
<!-- ## <div align="center">Compete and Win</div> | ||
We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competition with **$10,000** in cash prizes! | ||
<p align="center"> | ||
<a href="https://github.com/ultralytics/yolov5/discussions/3213"> | ||
<img width="850" src="https://github.com/ultralytics/yolov5/releases/download/v1.0/banner-export-competition.png"></a> | ||
</p> --> | ||
|
||
## <div align="center">Why YOLOv5</div> | ||
|
||
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040763-93c22a27-347c-4e3c-847a-8094621d3f4e.png"></p> | ||
<details> | ||
<summary>YOLOv5-P5 640 Figure (click to expand)</summary> | ||
|
||
<p align="left"><img width="800" src="https://user-images.githubusercontent.com/26833433/155040757-ce0934a3-06a6-43dc-a979-2edbbd69ea0e.png"></p> | ||
</details> | ||
<details> | ||
<summary>Figure Notes (click to expand)</summary> | ||
|
||
* **COCO AP val** denotes [email protected]:0.95 metric measured on the 5000-image [COCO val2017](http://cocodataset.org) dataset over various inference sizes from 256 to 1536. | ||
* **GPU Speed** measures average inference time per image on [COCO val2017](http://cocodataset.org) dataset using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) V100 instance at batch-size 32. | ||
* **EfficientDet** data from [google/automl](https://github.com/google/automl) at batch size 8. | ||
* **Reproduce** by `python val.py --task study --data coco.yaml --iou 0.7 --weights yolov5n6.pt yolov5s6.pt yolov5m6.pt yolov5l6.pt yolov5x6.pt` | ||
</details> | ||
|
||
### Pretrained Checkpoints | ||
|
||
[assets]: https://github.com/ultralytics/yolov5/releases | ||
|
||
[TTA]: https://github.com/ultralytics/yolov5/issues/303 | ||
|
||
|Model |size<br><sup>(pixels) |mAP<sup>val<br>0.5:0.95 |mAP<sup>val<br>0.5 |Speed<br><sup>CPU b1<br>(ms) |Speed<br><sup>V100 b1<br>(ms) |Speed<br><sup>V100 b32<br>(ms) |params<br><sup>(M) |FLOPs<br><sup>@640 (B) | ||
|--- |--- |--- |--- |--- |--- |--- |--- |--- | ||
|[YOLOv5n][assets] |640 |28.0 |45.7 |**45** |**6.3**|**0.6**|**1.9**|**4.5** | ||
|[YOLOv5s][assets] |640 |37.4 |56.8 |98 |6.4 |0.9 |7.2 |16.5 | ||
|[YOLOv5m][assets] |640 |45.4 |64.1 |224 |8.2 |1.7 |21.2 |49.0 | ||
|[YOLOv5l][assets] |640 |49.0 |67.3 |430 |10.1 |2.7 |46.5 |109.1 | ||
|[YOLOv5x][assets] |640 |50.7 |68.9 |766 |12.1 |4.8 |86.7 |205.7 | ||
| | | | | | | | | | ||
|[YOLOv5n6][assets] |1280 |36.0 |54.4 |153 |8.1 |2.1 |3.2 |4.6 | ||
|[YOLOv5s6][assets] |1280 |44.8 |63.7 |385 |8.2 |3.6 |16.8 |12.6 | ||
|[YOLOv5m6][assets] |1280 |51.3 |69.3 |887 |11.1 |6.8 |35.7 |50.0 | ||
|[YOLOv5l6][assets] |1280 |53.7 |71.3 |1784 |15.8 |10.5 |76.8 |111.4 | ||
|[YOLOv5x6][assets]<br>+ [TTA][TTA]|1280<br>1536 |55.0<br>**55.8** |72.7<br>**72.7** |3136<br>- |26.2<br>- |19.4<br>- |140.7<br>- |209.8<br>- | ||
|
||
<details> | ||
<summary>Table Notes (click to expand)</summary> | ||
|
||
* All checkpoints are trained to 300 epochs with default settings. Nano and Small models use [hyp.scratch-low.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-low.yaml) hyps, all others use [hyp.scratch-high.yaml](https://github.com/ultralytics/yolov5/blob/master/data/hyps/hyp.scratch-high.yaml). | ||
* **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](http://cocodataset.org) dataset.<br>Reproduce by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65` | ||
* **Speed** averaged over COCO val images using a [AWS p3.2xlarge](https://aws.amazon.com/ec2/instance-types/p3/) instance. NMS times (~1 ms/img) not included.<br>Reproduce by `python val.py --data coco.yaml --img 640 --task speed --batch 1` | ||
* **TTA** [Test Time Augmentation](https://github.com/ultralytics/yolov5/issues/303) includes reflection and scale augmentations.<br>Reproduce by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment` | ||
|
||
</details> | ||
|
||
## <div align="center">Contribute</div> | ||
|
||
We love your input! We want to make contributing to YOLOv5 as easy and transparent as possible. Please see our [Contributing Guide](CONTRIBUTING.md) to get started, and fill out the [YOLOv5 Survey](https://ultralytics.com/survey?utm_source=github&utm_medium=social&utm_campaign=Survey) to send us feedback on your experiences. Thank you to all our contributors! | ||
|
||
<a href="https://github.com/ultralytics/yolov5/graphs/contributors"><img src="https://opencollective.com/ultralytics/contributors.svg?width=990" /></a> | ||
|
||
## <div align="center">Contact</div> | ||
|
||
For YOLOv5 bugs and feature requests please visit [GitHub Issues](https://github.com/ultralytics/yolov5/issues). For business inquiries or | ||
professional support requests please visit [https://ultralytics.com/contact](https://ultralytics.com/contact). | ||
|
||
<br> | ||
|
||
<div align="center"> | ||
<a href="https://github.com/ultralytics"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-github.png" width="3%"/> | ||
</a> | ||
<img width="3%" /> | ||
<a href="https://www.linkedin.com/company/ultralytics"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-linkedin.png" width="3%"/> | ||
</a> | ||
<img width="3%" /> | ||
<a href="https://twitter.com/ultralytics"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-twitter.png" width="3%"/> | ||
</a> | ||
<img width="3%" /> | ||
<a href="https://www.producthunt.com/@glenn_jocher"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-producthunt.png" width="3%"/> | ||
</a> | ||
<img width="3%" /> | ||
<a href="https://youtube.com/ultralytics"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-youtube.png" width="3%"/> | ||
</a> | ||
<img width="3%" /> | ||
<a href="https://www.facebook.com/ultralytics"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-facebook.png" width="3%"/> | ||
</a> | ||
<img width="3%" /> | ||
<a href="https://www.instagram.com/ultralytics/"> | ||
<img src="https://github.com/ultralytics/yolov5/releases/download/v1.0/logo-social-instagram.png" width="3%"/> | ||
</a> | ||
</div> |