Skip to content

vandana-rajan/DL-learning-sources

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 

Repository files navigation

DL-learning-sources and tricks and tips

Blog posts and tutorials for learning the nuances of DL.

  1. https://medium.com/@jonathan_hui/deep-learning-designs-part-3-e0b15ef09ccc

  2. https://machinelearningmastery.com/visualize-deep-learning-neural-network-model-keras/

  3. To get reproducible results every time you run your network, initialize seeds of random generators. Use the following.

import numpy as np

np.random.seed(7)

import random

random.seed(7)

from tensorflow import set_random_seed

set_random_seed(7)

Also, initialize weights of conv layers without randomness. Example, use 'glorot_uniform' which uses fan_in and fan_out as factors.

In PyTorch, use

torch.backends.cudnn.deterministic = True

torch.backends.cudnn.benchmark = False

torch.manual_seed(999)

  1. Use ProgramCreek for example codes. Example https://www.programcreek.com/python/example/107694/torch.nn.LSTM

  2. For RNN-LSTM learning use Andrew Ng's lectures at https://www.youtube.com/playlist?list=PL1w8k37X_6L_s4ncq-swTBvKDWnRSrinI and Christopher Olah's blog http://colah.github.io/posts/2015-08-Understanding-LSTMs/

  3. An intuitive explanation of cross-entropy loss https://towardsdatascience.com/understanding-binary-cross-entropy-log-loss-a-visual-explanation-a3ac6025181a

  4. L0,L1,L2 and L-infinity norms: https://medium.com/@montjoile/l0-norm-l1-norm-l2-norm-l-infinity-norm-7a7d18a4f40c and https://rorasa.wordpress.com/2012/05/13/l0-norm-l1-norm-l2-norm-l-infinity-norm/

  5. A bit of history about phonetically balanced sentences: https://gizmodo.com/the-harvard-sentences-secretly-shaped-the-development-1689793568 [Not exactly related to DL but audio engineering.]

  6. Data Visualization: https://medium.com/swlh/effective-visualization-of-multi-dimensional-data-a-hands-on-approach-b48f36a56ee8

  7. Bias-Variance Trade Off: https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff

  8. Variational Auto Encoder: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

  9. nice blog on quantization : https://medium.com/@luis.vasquez.work.log/zero-point-quantization-how-do-we-get-those-formulas-4155b51a60d6

About

Blog posts and tutorials for learning the nuances of DL

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published