Detection of anomalous situations for complex mission-critical systems holds paramount importance when their service continuity needs to be ensured. A major challenge in detecting anomalies from the operational data arises due to the imbalanced class distribution problem since the anomalies are supposed to be rare events. This paper evaluates a diverse array of machine learning-based anomaly detection algorithms through a comprehensive benchmark study.
The paper contributes significantly by conducting an unbiased comparison of various anomaly detection algorithms, spanning classical machine learning including various tree-based approaches to deep learning and outlier detection methods. The inclusion of 104 publicly available and a few proprietary industrial systems datasets enhances the diversity of the study, allowing for a more realistic evaluation of algorithm performance and emphasizing the importance of adaptability to real-world scenarios. %Additionally, the study explores the generalization ability of our proposed MGBTAI and d-BTAI algorithms in scenarios with varying anomaly volumes, showcasing their adaptability.
The paper dispels the deep learning myth, demonstrating that though powerful, deep learning is not a universal solution in this case. We observed that recently proposed tree-based evolutionary algorithms outperform in many scenarios. We noticed that tree-based approaches catch a singleton anomaly in a dataset where deep learning methods fail. On the other hand, classical SVM performs the best on datasets with more than 10% anomalies, implying that such scenarios can be best modeled as a classification problem rather than anomaly detection. To our knowledge, such a study on a large number of state-of-the-art algorithms using diverse data sets, with the objective of guiding researchers and practitioners in making informed algorithmic choices, has not been attempted earlier.