Skip to content

Commit

Permalink
Merge pull request #303 from mvfki/newObj
Browse files Browse the repository at this point in the history
Collective updates
  • Loading branch information
mvfki authored Mar 11, 2024
2 parents 885d3c1 + d02ec1b commit 530b137
Show file tree
Hide file tree
Showing 18 changed files with 925 additions and 200 deletions.
3 changes: 0 additions & 3 deletions DESCRIPTION
Original file line number Diff line number Diff line change
Expand Up @@ -75,15 +75,12 @@ Suggests:
ggrepel,
gprofiler2,
IRanges,
irlba,
knitr,
org.Hs.eg.db,
plotly,
psych,
RcppPlanc,
reactome.db,
rgl,
rglwidget,
rmarkdown,
sankey,
scattermore (>= 0.7),
Expand Down
3 changes: 3 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,8 @@ S3method(plotSpatial2D,liger)
S3method(plotSpatial2D,ligerSpatialDataset)
S3method(quantileNorm,Seurat)
S3method(quantileNorm,liger)
S3method(runCINMF,Seurat)
S3method(runCINMF,liger)
S3method(runINMF,Seurat)
S3method(runINMF,liger)
S3method(runIntegration,Seurat)
Expand Down Expand Up @@ -156,6 +158,7 @@ export(restoreH5Liger)
export(restoreOnlineLiger)
export(retrieveCellFeature)
export(reverseMethData)
export(runCINMF)
export(runCluster)
export(runDoubletFinder)
export(runGOEnrich)
Expand Down
8 changes: 8 additions & 0 deletions R/RcppExports.R
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,14 @@ RunModularityClusteringCpp <- function(SNN, modularityFunction, resolution, algo
.Call(`_rliger2_RunModularityClusteringCpp`, SNN, modularityFunction, resolution, algorithm, nRandomStarts, nIterations, randomSeed, printOutput, edgefilename)
}

colNormalize_dense_cpp <- function(x, L) {
.Call(`_rliger2_colNormalize_dense_cpp`, x, L)
}

colAggregateMedian_dense_cpp <- function(x, group, n) {
.Call(`_rliger2_colAggregateMedian_dense_cpp`, x, group, n)
}

scaleNotCenter_byRow_rcpp <- function(x) {
.Call(`_rliger2_scaleNotCenter_byRow_rcpp`, x)
}
Expand Down
123 changes: 0 additions & 123 deletions R/archive.R
Original file line number Diff line number Diff line change
Expand Up @@ -107,126 +107,3 @@
# featureIdx
# return(ld)
# }

#' #' Perform Wilcoxon rank-sum test
#' #' @description Perform Wilcoxon rank-sum tests on specified dataset using
#' #' given method.
#' #' @param object A \linkS4class{liger} object with cluster assignment available.
#' #' @param useDatasets A character vector of the names, a numeric or logical
#' #' vector of the index of the datasets to be normalized. Default
#' #' \code{NULL} uses all datasets.
#' #' @param method Choose from \code{"clusters"} or \code{"datasets"}. Default
#' #' \code{"clusters"} compares between clusters across all datasets, while
#' #' \code{"datasets"} compares between datasets within each cluster.
#' #' @param useCluster The name of the column in \code{cellMeta} slot storing the
#' #' cluster assignment variable. Default \code{"leiden_cluster"}
#' #' @param usePeak Logical, whether to test peak counts instead of gene
#' #' expression. Requires presence of ATAC modility datasets. Default
#' #' \code{FALSE}.
#' #' @param verbose Logical. Whether to show information of the progress. Default
#' #' \code{getOption("ligerVerbose")} which is \code{TRUE} if users have not set.
#' #' @param data.use,compare.method \bold{Deprecated}. See Usage section for
#' #' replacement.
#' #' @return A 10-columns data.frame with test results.
#' #' @export
#' #' @examples
#' #' library(dplyr)
#' #' result <- runWilcoxon(pbmcPlot)
#' #' result %>% group_by(group) %>% top_n(2, logFC)
#' runWilcoxon <- function(
#' object,
#' useDatasets = NULL,
#' method = c("clusters", "datasets"),
#' useCluster = "leiden_cluster",
#' usePeak = FALSE,
#' verbose = getOption("ligerVerbose"),
#' # Deprecated coding style,
#' data.use = useDatasets,
#' compare.method = method
#' ) {
#' .deprecateArgs(list(data.use = "useDatasets", compare.method = "method"))
#' method <- match.arg(method)
#' # Input checks ####
#' useDatasets <- .checkUseDatasets(object, useDatasets,
#' modal = ifelse(usePeak, "atac", "default"))
#' if (!isTRUE(usePeak)) {
#' if (method == "datasets" & length(useDatasets) < 2)
#' stop("Should have at least 2 datasets as input ",
#' "when compare between datasets")
#' if (isH5Liger(object, useDatasets)) {
#' stop("HDF5 based datasets detected but is not supported. \n",
#' "Try `object.sub <- downsample(object, useSlot = ",
#' "'normData')` to create ANOTHER object with in memory data.")
#' }
#' allNormed <- all(sapply(datasets(object),
#' function(ld) !is.null(normData(ld))))
#' if (!allNormed)
#' stop("All datasets being involved has to be normalized")
#'
#' ## get all shared genes of datasets involved
#' normDataList <- getMatrix(object, "normData", dataset = useDatasets,
#' returnList = TRUE)
#' features <- Reduce(intersect, lapply(normDataList, rownames))
#' normDataList <- lapply(normDataList, function(x) x[features,])
#' featureMatrix <- Reduce(cbind, normDataList)
#' } else {
#' if (method == "datasets" || length(useDatasets) != 1)
#' stop("For wilcoxon test on peak counts, can only use ",
#' "\"cluster\" method on one dataset.")
#' normPeakList <- lapply(useDatasets, function(d) normPeak(object, d))
#' features <- Reduce(intersect, lapply(normPeakList, rownames))
#' featureMatrix <- Reduce(cbind, normPeakList)
#' #featureMatrix <- normPeak(object, useDatasets)
#' if (is.null(featureMatrix))
#' stop("Peak counts of specified dataset has to be normalized. ",
#' "Please try `normalizePeak(object, useDatasets = '",
#' useDatasets, "')`.")
#' #features <- rownames(featureMatrix)
#' }
#'
#' ## Subset metadata involved
#' cellIdx <- object$dataset %in% useDatasets
#' cellSource <- object$dataset[cellIdx]
#' clusters <- .fetchCellMetaVar(object, useCluster, cellIdx = cellIdx,
#' checkCategorical = TRUE)
#'
#' if (isTRUE(verbose))
#' .log("Performing Wilcoxon test on ", length(useDatasets), " datasets: ",
#' paste(useDatasets, collapse = ", "))
#' # perform wilcoxon test ####
#' if (method == "clusters") {
#' # compare between clusters across datasets
#' nfeatures <- length(features)
#' if (nfeatures > 100000) {
#' if (isTRUE(verbose)) .log("Calculating Large-scale Input...")
#' results <- Reduce(rbind, lapply(
#' suppressWarnings(split(seq(nfeatures),
#' seq(nfeatures / 100000))),
#' function(index) {
#' fm <- log1p(1e10*featureMatrix[index, ])
#' wilcoxauc(fm, clusters)
#' }))
#' } else {
#' # TODO: If we add log-transformation to normalization method in the
#' # future, remember to have conditions here.
#' fm <- log1p(1e10*featureMatrix)
#' results <- wilcoxauc(fm, clusters)
#' }
#' } else {
#' # compare between datasets within each cluster
#' results <- Reduce(rbind, lapply(levels(clusters), function(cluster) {
#' clusterIdx <- clusters == cluster
#' subLabel <- paste0(cluster, "-", cellSource[clusterIdx])
#' if (length(unique(subLabel)) == 1) {
#' # if cluster has only 1 data source
#' warning("Skipped Cluster ", cluster,
#' " since it has only one dataset source.")
#' return()
#' } else {
#' subMatrix <- log1p(1e10*featureMatrix[, clusterIdx])
#' return(wilcoxauc(subMatrix, subLabel))
#' }
#' }))
#' }
#' return(results)
#' }
Loading

0 comments on commit 530b137

Please sign in to comment.