Automatic Radiotherapy Treatment Planning , Knowledge-Based Planning , Dose Prediction , Cascade 3D Network (C3D) ,DCNN, Head and Neck ,
1st Place Solution to the AAPM OpenKBP challenge
Please feel free to concat me if you have any questions, email: [email protected], Shuolin Liu
This repository contains an PyTorch implementation for radiotherapy dose prediction, along with pre-trained models and examples.
The goal of this implementation is to be simple, highly extensible, and easy to integrate into your own projects. This implementation is a work in progress -- more dose prediction models are currently being implemented. Currently support:
-
C3D, a cascade 3D network for radiotherapy dose prediction, the 1st place solution to the AAPM OpenKBP challenge
-
DCNN, a lightweight and accurate dose prediction method
- Results on OpenKBP Test Set using a Single model with test-time augmenation(TTA)
Model | Batch size |
GPU memory |
Training iterations |
Training time |
Dose score |
DVH score |
Pre-trained Models |
---|---|---|---|---|---|---|---|
C3D (3D) |
2 | 18Gb | 80,000 | 50 hours (Two 1080TIs) |
2.46 | 1.46 | Google Drive Baidu Drive, PassWord:voni |
DCNN (2D) |
32 | 3Gb | 100,000 | 20 hours (Single 1080TI) |
2.75 | 1.68 | Google Drive Baidu Drive, PassWord:j56y |
- OpenKBP leaderboard
- torch >=1.2.0
- tqdm
- opencv-python
- numpy
- SimpleITK
- pandas
- scikit-image
- scipy
-
Data Preparation
- Download OpenKBP challenge repository, and copy the repository to
/path_to_your_RTDosePrediction/RTDosePrediction/Data/
For me, /path_to_your_RTDosePrediction/ is E://Project/RTDosePrediction-main/
-
C3D:
cd /path_to_your_RTDosePrediction/RTDosePrediction/Src/DataPrepare python prepare_OpenKBP_C3D.py
-
DCNN:
cd /path_to_your_RTDosePrediction/RTDosePrediction/Src/DataPrepare python prepare_OpenKBP_DCNN.py
- Download OpenKBP challenge repository, and copy the repository to
-
Training
-
C3D:
cd /path_to_your_RTDosePrediction/RTDosePrediction/Src/C3D python train.py --batch_size 2 --list_GPU_ids 1 0 --max_iter 80000
If you have more GPUs, we suggest set batch_size to 4 and reset list_GPU_ids.
For example, python train.py --batch_size 4 --list_GPU_ids 3 2 1 0 --max_iter 80000 -
DCNN:
cd /path_to_your_RTDosePrediction/RTDosePrediction/Src/DCNN python train.py --batch_size 32 --list_GPU_ids 0 --max_iter 100000
-
-
Testing
-
C3D:
cd /path_to_your_RTDosePrediction/RTDosePrediction/Src/C3D python test.py --GPU_id 0
-
DCNN:
cd /path_to_your_RTDosePrediction/RTDosePrediction/Src/DCNN python test.py --GPU_id 0
-
-
Using pre-trained models
-
Download model weights for C3D (Google Drive, Baidu Drive, PassWord:voni) and DCNN(Google Drive, Baidu Drive, PassWord:j56y)
-
Copy model weights to
/path_to_your_RTDosePrediction/RTDosePrediction/PretrainedModels
-
C3D:
cd /path_to_your_RTDosePrediction/RTDosePrediction/Src/C3D python test.py --GPU_id 0 --model_path ../../PretrainedModels/C3D_bs4_iter80000.pkl
-
DCNN:
cd /path_to_your_RTDosePrediction/RTDosePrediction/Src/DCNN python test.py --GPU_id 0 --model_path ../../PretrainedModels/DCNN_bs32_iter100000.pkl
-
if you find C3D and DCNN useful in your research, please consider citing:
- C3D
@article{C3D,
title = {Cascade 3D Network for Radiotherapy Dose Prediction : 1st Place Solution to OpenKBP Challenge},
author = {Shuolin Liu and Jingjing Zhang and Teng Li and Hui Yan and Jianfei Liu},
journal = {Medical Physics, under review}
}
- DCNN
@article{DCNN,
title = {Predicting voxel-level dose distributions for esophageal radiotherapy using densely connected network with dilated convolutions},
doi = {10.1088/1361-6560/aba87b},
url = {https://doi.org/10.1088%2F1361-6560%2Faba87b},
year = 2020,
month = {oct},<br>
publisher = {{IOP} Publishing},
volume = {65},
number = {20},
pages = {205013},
author = {Jingjing Zhang and Shuolin Liu and Hui Yan and Teng Li and Ronghu Mao and Jianfei Liu},
journal = {Physics in Medicine {\&} Biology
}
Thank OpenKBP Organizers: Aaron Babier, Binghao Zhang, Rafid Mahmood, Timothy Chan, Andrea McNiven, Thomas Purdie, and Kevin Moore.