类别 | 名称 | Houston13 | Houston18 |
---|---|---|---|
1 | Grass healthy | 345 | 1353 |
2 | Grass stressed | 365 | 4888 |
3 | Trees | 365 | 2766 |
4 | Water | 285 | 22 |
5 | Residential buildings | 319 | 5347 |
6 | Non-residential buildings | 408 | 32459 |
7 | Road | 443 | 6365 |
total | total | 2530 | 53200 |
shape | N * H * C | 210 * 954 * 48 | 210 * 954 * 48 |
类别 | 名称 | Dioni | Loukia |
---|---|---|---|
1 | Dense urban fabric | 1262 | 288 |
2 | Mineral extraction sites | 204 | 67 |
3 | Non irrigated land | 614 | 542 |
4 | Fruit trees | 150 | 79 |
5 | Olive Groves | 1768 | 1401 |
6 | Coniferous Forest | 361 | 500 |
7 | Dense Vegetation | 5035 | 3793 |
8 | Sparce Vegetation | 6374 | 2803 |
9 | Sparce Areas | 1754 | 404 |
10 | Rocks and Sand | 492 | 487 |
11 | Water | 1612 | 1393 |
12 | Coastal Water | 398 | 451 |
total | total | 20024 | 12208 |
shape | N * H * C | 250 * 1376 * 176 | 249 * 945 * 176 |
RGB bands: 23, 11, 07 |
类别 | 名称 | Hangzhou | Shanghai |
---|---|---|---|
1 | Water | 18043 | 123123 |
2 | Land/Building | 77450 | 161689 |
3 | Plant | 40207 | 83188 |
total | total | 135700 | 368000 |
shape | N * H * C | 1600 * 260 * 198 | 590 * 230 * 198 |
类别 | 名称 | PaviaU | PaviaC |
---|---|---|---|
1 | Tree | 3064 | 7598 |
2 | Asphalt | 6631 | 9248 |
3 | Brick | 3682 | 2685 |
4 | Bitumen | 1330 | 7287 |
5 | Shadow | 947 | 2863 |
6 | Meadow | 18649 | 3090 |
7 | Bare soil | 5029 | 6584 |
total | total | 39332 | 39355 |
shape | N * H * C | 610 * 340 * 102 | 1096 * 715 * 102 |
类别 | 名称 | Source | Target |
---|---|---|---|
1 | Concrete/ Asphalt | 4867 | 2942 |
2 | Corn cleanTill | 9822 | 6029 |
3 | Corn cleanTill EW | 11414 | 7999 |
4 | Orchard | 5106 | 1562 |
5 | Soybeans cleanTill | 4731 | 4792 |
6 | Soybeans cleanTill EW | 2996 | 1638 |
7 | Wheat | 3223 | 10739 |
total | total | 42159 | 35701 |
shape | N * H * C | 300 * 400 * 200 | 300 * 400 * 200 |
- DDC
- DAN
- DeepCORAL
- JAN
- DSAN
- DANN
- ADDA
- CDAN
- MCD
- ParetoDA
- Self-training
- DST
- TSTNet
- 运行 train/[model]/[dataset].bat文件
- 或者运行如下命令
python train/ddc/train.py configs/houston/dan_1800_average.yaml ^
--path ./runs/houston/dan-train ^
--nodes 1 ^
--gpus 1 ^
--rank-node 0 ^
--backend gloo ^
--master-ip localhost ^
--master-port 8886 ^
--seed 30 ^
--opt-level O2
验证集等于测试集,无需再另行测试
Dataset | Model | OA-best | backbone | sample-num | sample-order | loss | loss-ratio | kernel | batch-size |
---|---|---|---|---|---|---|---|---|---|
Houston | DNN | 0.686±0.035 | fe | - | - | softmax+ce | 1 | - | 64 |
Houston | DDC | 0.705±0.027 | fe | - | - | softmax+ce, mmd loss | 1:1 | g1 | 64 |
Houston | DAN | 0.694±0.048 | fe | - | - | softmax+ce, mmd loss | 1:1 | g5 | 64 |
Houston | JAN | 0.694±0.033 | fe | - | - | softmax+ce, joint mmd loss | 1:1 | g5 | 64 |
Houston | DSAN | 0.664±0.108 | fe | - | - | softmax+ce, local mmd loss | 1:1 | g5 | 64 |
Houston | DANN | 0.620±0.060 | fe | - | - | softmax+ce | 1 | - | 64 |
Houston | MCD | 0.632±0.033 | fe | - | - | softmax+ce, l1 loss | 1:1 | - | 64 |
Houston | Self-training | 0.652±0.003 | fe | - | softmax+ce, cbst loss | 1:1 | - | 100 | |
Houston | DST | 0.597±0.018 | fe | - | - | softmax+ce, wcec loss, cbst loss | 1:1:1 | - | 100 |
Houston | DADST | 0.593±0.013 | fe | - | - | softmax+ce, wcec loss, adv loss, cbst loss | 1:1:1:1 | - | 100 |
Houston | TSTNet | 0.762 | fe | - | - | softmax+ce, mmd loss, got loss | 1:1:0.1 | g5 | 100 |
Houston | DNN | 0.671±0.042 | fe | 1260 | average | softmax+ce | 1 | - | 64 |
Houston | DDC | 0.676±0.053 | fe | 1260 | average | softmax+ce, mmd loss | 1:1 | g1 | 64 |
Houston | DAN | 0.686±0.058 | fe | 1260 | average | softmax+ce, mmd loss | 1:1 | g5 | 64 |
Houston | JAN | 0.677±0.058 | fe | 1260 | average | softmax+ce, joint mmd loss | 1:1 | g5 | 64 |
Houston | DSAN | 0.643±0.050 | fe | 1260 | average | softmax+ce, local mmd loss | 1:1 | g5 | 64 |
Houston | DANN | 0.590±0.060 | fe | 1260 | average | softmax+ce | 1 | - | 64 |
Houston | MCD | 0.618±0.027 | fe | 1260 | average | softmax+ce, l1 loss | 1:1 | - | 64 |
Houston | Self-training | 0.631±0.011 | fe | 1260 | average | softmax+ce, cbst loss | 1:1 | - | 64 |
Houston | DST | 0.576±0.015 | fe | 1260 | average | softmax+ce, wcec loss, cbst loss | 1:1:1 | - | 64 |
Houston | DADST | 0.575±0.015 | fe | 1260 | average | softmax+ce, wcec loss, adv loss, cbst loss | 1:1:1:1 | - | 64 |
HyRANK | DNN | 0.507±0.023 | fe | - | - | softmax+ce | 1 | l | 64 |
HyRANK | DDC | 0.523±0.030 | fe | - | - | softmax+ce, mmd loss | 1:1 | g1 | 64 |
HyRANK | DAN | 0.504±0.039 | fe | - | - | softmax+ce, mmd loss | 1:3 | g5 | 64 |
HyRANK | JAN | 0.516±0.026 | fe | - | - | softmax+ce, joint mmd loss | 1:1 | g5 | 64 |
HyRANK | DANN | 0.582±0.038 | fe | - | - | softmax+ce | 1 | - | 64 |
HyRANK | MCD | 0.561±0.026 | fe | - | - | softmax+ce, l1 loss | 1:1 | - | 64 |
HyRANK | Self-training | 0.514±0.009 | fe | - | - | softmax+ce, cbst loss | 1:1 | - | 64 |
HyRANK | DST | 0.558±0.021 | fe | - | - | softmax+ce, wcec loss, cbst loss | 1:1:1 | - | 64 |
HyRANK | DADST | 0.558±0.015 | fe | - | - | softmax+ce, wcec loss, adv loss, cbst loss | 1:1:1:1 | - | 64 |
HyRANK | DADST | 0.572±0.023 | fe | - | - | softmax+ce, wcec loss, adv loss, cbst loss | 1:1:2:1 | - | 64 |
HyRANK | TSTNet | 0.633 | fe | - | - | softmax+ce, mmd loss, got loss | 1:1:0.1 | l | 100 |
HyRANK | DNN | 0.492±0.029 | fe | 1800 | average | softmax+ce | 1 | l | 64 |
HyRANK | DDC | 0.491±0.028 | fe | 1800 | average | softmax+ce, mmd loss | 1:1 | g1 | 64 |
HyRANK | DAN | 0.496±0.021 | fe | 1800 | average | softmax+ce, mmd loss | 1:3 | g5 | 64 |
HyRANK | JAN | 0.485±0.022 | fe | 1800 | average | softmax+ce, joint mmd loss | 1:1 | g5 | 64 |
HyRANK | DANN | 0.473±0.036 | fe | 1800 | average | softmax+ce | 1 | - | 64 |
HyRANK | MCD | 0.552±0.027 | fe | 1800 | average | softmax+ce, l1 loss | 1:1 | - | 64 |
HyRANK | Self-training | 0.514±0.006 | fe | 1800 | average | softmax+ce, cbst loss | 1:1 | - | 64 |
HyRANK | DST | 0.478±0.034 | fe | 1800 | average | softmax+ce, wcec loss, cbst loss | 1:1:1 | - | 64 |
HyRANK | DADST | 0.478±0.028 | fe | 1800 | average | softmax+ce, wcec loss, adv loss, cbst loss | 1:1:1:1 | - | 64 |
ShanghaiHangzhou | DNN | 0.909±0.002 | fe | - | - | softmax+ce | 1 | - | 64 |
ShanghaiHangzhou | DDC | 0.887±0.008 | fe | - | - | softmax+ce, mmd loss | 1:1 | g1 | 64 |
ShanghaiHangzhou | DAN | 0.904±0.011 | fe | - | - | softmax+ce, mmd loss | 1:1 | g5 | 64 |
ShanghaiHangzhou | JAN | 0.903±0.011 | fe | - | - | softmax+ce, joint mmd loss | 1:1 | g5 | 64 |
ShanghaiHangzhou | DSAN | 0.907±0.005 | fe | - | - | softmax+ce, local mmd loss | 1:1 | g5 | 64 |
ShanghaiHangzhou | DANN | 0.905±0.016 | fe | - | - | softmax+ce | 1 | - | 64 |
ShanghaiHangzhou | MCD | 0.717±0.105 | fe | - | - | softmax+ce, l1 loss | 1:1 | - | 64 |
ShanghaiHangzhou | Self-training | 0.915±0.000 | fe | - | - | softmax+ce, cbst loss | 1:1 | - | 64 |
ShanghaiHangzhou | DST | 0.933±0.012 | fe | - | - | softmax+ce, wcec loss, cbst loss | 1:1:1 | - | 64 |
ShanghaiHangzhou | DADST | 0.927±0.007 | fe | - | - | softmax+ce, wcec loss, adv loss, cbst loss | 1:1:1:1 | - | 64 |
ShanghaiHangzhou | TSTNet | 0.801 | fe | - | - | softmax+ce, mmd loss, got loss | 1:1:0.1 | l | 100 |
ShanghaiHangzhou | DNN | 0.911±0.020 | fe | 540 | average | softmax+ce | 1 | - | 64 |
ShanghaiHangzhou | DDC | 0.928±0.004 | fe | 540 | average | softmax+ce, mmd loss | 1:1 | g1 | 64 |
ShanghaiHangzhou | DAN | 0.913±0.011 | fe | 540 | average | softmax+ce, mmd loss | 1:1 | g5 | 64 |
ShanghaiHangzhou | JAN | 0.905±0.014 | fe | 540 | average | softmax+ce, joint mmd loss | 1:1 | g5 | 64 |
ShanghaiHangzhou | DSAN | 0.901±0.013 | fe | 540 | average | softmax+ce, local mmd loss | 1:1 | g5 | 64 |
ShanghaiHangzhou | DANN | 0.910±0.010 | fe | 540 | average | softmax+ce | 1 | - | 64 |
ShanghaiHangzhou | MCD | 0.930±0.004 | fe | 540 | average | softmax+ce, l1 loss | 1:1 | - | 64 |
ShanghaiHangzhou | Self-training | 0.925±0.000 | fe | 540 | average | softmax+ce, cbst loss | 1:1 | - | 64 |
ShanghaiHangzhou | DST | 0.927±0.015 | fe | 540 | average | softmax+ce, wcec loss, cbst loss | 1:1:1 | - | 64 |
ShanghaiHangzhou | DADST | 0.933±0.004 | fe | 540 | average | softmax+ce, wcec loss, adv loss, cbst loss | 1:1:1:1 | - | 64 |
This project is released under the MIT(LICENSE) license.