Skip to content

Feature selection in neural networks

License

Notifications You must be signed in to change notification settings

xyang23/lassonet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyPI version

LassoNet

LassoNet is a new family of models to incorporate feature selection and neural networks.

LassoNet works by adding a linear skip connection from the input features to the output. A L1 penalty (LASSO-inspired) is added to that skip connection along with a constraint on the network so that whenever a feature is ignored by the skip connection, it is ignored by the whole network.

Promo Video

Installation

pip install lassonet

Usage

We have designed the code to follow scikit-learn's standards to the extent possible (e.g. linear_model.Lasso).

from lassonet import LassoNetClassifierCV 
model = LassoNetClassifierCV() # LassoNetRegressorCV
path = model.fit(X_train, y_train)
print("Best model scored", model.score(X_test, y_test))
print("Lambda =", model.best_lambda_)

You can read the full documentation or read the examples that cover all features.

Features

  • regression, classification and Cox regression with LassoNetRegressor, LassoNetClassifier and LassoNetCoxRegressor.
  • cross-validation with LassoNetRegressorCV, LassoNetClassifierCV and LassoNetCoxRegressorCV
  • group feature selection with the groups argument
  • lambda_start="auto" heuristic

Note that cross-validation, group feature selection and automatic lambda_start selection have not been published in papers, you can read the code or post as issue to request more details.

We are currently working (among others) on adding support for convolution layers, auto-encoders and online logging of experiments.

Cross-validation

The original paper describes how to train LassoNet along a regularization path. This requires the user to manually select a model from the path and made the .fit() method useless since the resulting model is always empty. This feature is still available with the .path() method for any model or the lassonet_path function and returns a list of checkpoints that can be loaded with .load().

Since then, we integrated support for cross-validation (5-fold by default) in the estimators whose name ends with CV. For each fold, a path is trained. The best regularization value is then chosen to maximize the average performance over all folds. The model is then retrained on the whole training dataset to reach that regularization.

Website

LassoNet's website is https://lassonet.ml. It contains many useful references including the paper, live talks and additional documentation.

References

  • Lemhadri, Ismael, Feng Ruan, Louis Abraham, and Robert Tibshirani. "LassoNet: A Neural Network with Feature Sparsity." Journal of Machine Learning Research 22, no. 127 (2021). pdf bibtex
  • Yang, Xuelin, Louis Abraham, Sejin Kim, Petr Smirnov, Feng Ruan, Benjamin Haibe-Kains, and Robert Tibshirani. "FastCPH: Efficient Survival Analysis for Neural Networks." arXiv preprint arXiv:2208.09793 (2022). pdf

About

Feature selection in neural networks

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 97.7%
  • Makefile 1.6%
  • TeX 0.7%