Skip to content

Official implementation for "A Statistical Model for Predicting Generalization in Few-Shot Classification" accepted at EUSIPCO 2023

License

Notifications You must be signed in to change notification settings

ybendou/fs-generalization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

d5939ce · Dec 6, 2023

History

8 Commits
Mar 13, 2023
Mar 13, 2023
Dec 7, 2022
Dec 6, 2023
Dec 7, 2022
Dec 7, 2022
Mar 13, 2023
Mar 13, 2023
Dec 7, 2022

Repository files navigation

A Statistical Model for Predicting Generalization in Few-Shot Classification

Official implementation for "A Statistical Model for Predicting Generalization in Few-Shot Classification" accepted at EUSIPCO 2023.

To run the code for different datasets, first download the features. We use the features proposed in the article https://arxiv.org/pdf/2201.09699.pdf which can be downloaded from the following link and can be put in the the folder "features".

Then, run the following Bash script:

./bash_scripts/run_mini.sh

If one is interested in changing elements of the runs, you can specify the parameters and run the following commands:

SAVE_PATH="results";
FEATURES_PATH="features"

# validation set
VALIDATION_DATASET="miniimagenet_validation";
VALIDATION_FEATURES="mini11miniimagenet_validation_features";

# Test set
TEST_DATASET="miniimagenet_test";
TEST_FEATURES="mini11miniimagenet_test_features";

N_RUNS=1000; #Number of few-shot problems
N_WAYS=5; #Number of classes
MAXK=50; #Max number of samples
UNBALANCED="False";
MDS="True";

# First run the validation split
python  main_bias_estimate.py --save-folder $SAVE_PATH --maxK $MAXK --features-path $FEATURES_PATH/$VALIDATION_FEATURES.pt --dataset $VALIDATION_DATASET --validation --n-ways $N_WAYS --n-runs $N_RUNS --mds $MDS; 

# Run on the test set
python  main_bias_estimate.py --save-folder $SAVE_PATH --maxK $MAXK --features-path $FEATURES_PATH/$TEST_FEATURES.pt --dataset $TEST_DATASET --config-validation $SAVE_PATH/$VALIDATION_DATASET"/nruns"$N_RUNS"_c"$N_WAYS"_unbalanced"$UNBALANCED"_filename_"$VALIDATION_FEATURES.pt --n-ways $N_WAYS --n-runs $N_RUNS --mds $MDS;  

About

Official implementation for "A Statistical Model for Predicting Generalization in Few-Shot Classification" accepted at EUSIPCO 2023

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published