Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(gpu): speed up packing KS for levels==1 #1875

Merged
merged 1 commit into from
Dec 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,7 @@ template <typename Torus> struct int_compression {

scratch_packing_keyswitch_lwe_list_to_glwe_64(
streams[0], gpu_indexes[0], &fp_ks_buffer,
compression_params.small_lwe_dimension,
compression_params.glwe_dimension, compression_params.polynomial_size,
num_radix_blocks, true);
}
Expand Down
4 changes: 2 additions & 2 deletions backends/tfhe-cuda-backend/cuda/include/keyswitch.h
Original file line number Diff line number Diff line change
Expand Up @@ -21,8 +21,8 @@ void cuda_keyswitch_lwe_ciphertext_vector_64(

void scratch_packing_keyswitch_lwe_list_to_glwe_64(
void *stream, uint32_t gpu_index, int8_t **fp_ks_buffer,
uint32_t glwe_dimension, uint32_t polynomial_size, uint32_t num_lwes,
bool allocate_gpu_memory);
uint32_t lwe_dimension, uint32_t glwe_dimension, uint32_t polynomial_size,
uint32_t num_lwes, bool allocate_gpu_memory);

void cuda_packing_keyswitch_lwe_list_to_glwe_64(
void *stream, uint32_t gpu_index, void *glwe_array_out,
Expand Down
358 changes: 358 additions & 0 deletions backends/tfhe-cuda-backend/cuda/src/crypto/fast_packing_keyswitch.cuh
Original file line number Diff line number Diff line change
@@ -0,0 +1,358 @@
#ifndef CNCRT_FAST_KS_CUH
#define CNCRT_FAST_KS_CUH

#undef NDEBUG
#include <assert.h>

#include "device.h"
#include "gadget.cuh"
#include "helper_multi_gpu.h"
#include "keyswitch.cuh"
#include "polynomial/functions.cuh"
#include "polynomial/polynomial_math.cuh"
#include "torus.cuh"
#include "utils/helper.cuh"
#include "utils/kernel_dimensions.cuh"
#include <thread>
#include <vector>

#define CEIL_DIV(M, N) ((M) + (N)-1) / (N)

const int BLOCK_SIZE_GEMM = 64;
const int THREADS_GEMM = 8;
const int BLOCK_SIZE_DECOMP = 8;

template <typename Torus> uint64_t get_shared_mem_size_tgemm() {
return BLOCK_SIZE_GEMM * THREADS_GEMM * 2 * sizeof(Torus);
}

__host__ inline bool can_use_pks_fast_path(uint32_t lwe_dimension,
uint32_t num_lwe,
uint32_t polynomial_size,
uint32_t level_count,
uint32_t glwe_dimension) {
// TODO: Generalize to level_count > 1 by transposing the KSK
pdroalves marked this conversation as resolved.
Show resolved Hide resolved
return level_count == 1;
}

// Initialize decomposition by performing rounding
// and decomposing one level of an array of Torus LWEs. Only
// decomposes the mask elements of the incoming LWEs.
template <typename Torus, typename TorusVec>
__global__ void decompose_vectorize_init(Torus const *lwe_in, Torus *lwe_out,
uint32_t lwe_dimension,
uint32_t num_lwe, uint32_t base_log,
uint32_t level_count) {

// index of this LWE ct in the buffer
auto lwe_idx = blockIdx.x * blockDim.x + threadIdx.x;
// index of the LWE sample in the LWE ct
auto lwe_sample_idx = blockIdx.y * blockDim.y + threadIdx.y;

if (lwe_idx >= num_lwe || lwe_sample_idx >= lwe_dimension)
return;

// Input LWE array is [mask_0, .., mask_lwe_dim, message] and
// we only decompose the mask. Thus the stride for reading
// is lwe_dimension + 1, while for writing it is lwe_dimension
auto read_val_idx = lwe_idx * (lwe_dimension + 1) + lwe_sample_idx;
auto write_val_idx = lwe_idx * lwe_dimension + lwe_sample_idx;

Torus a_i = lwe_in[read_val_idx];

Torus state = init_decomposer_state(a_i, base_log, level_count);

Torus mod_b_mask = (1ll << base_log) - 1ll;
lwe_out[write_val_idx] = decompose_one<Torus>(state, mod_b_mask, base_log);
}

// Continue decomposiion of an array of Torus elements in place. Supposes
// that the array contains already decomposed elements and
// computes the new decomposed level in place.
template <typename Torus, typename TorusVec>
__global__ void
decompose_vectorize_step_inplace(Torus *buffer_in, uint32_t lwe_dimension,
uint32_t num_lwe, uint32_t base_log,
uint32_t level_count) {

// index of this LWE ct in the buffer
auto lwe_idx = blockIdx.x * blockDim.x + threadIdx.x;
// index of the LWE sample in the LWE ct
auto lwe_sample_idx = blockIdx.y * blockDim.y + threadIdx.y;

if (lwe_idx >= num_lwe || lwe_sample_idx >= lwe_dimension)
return;

auto val_idx = lwe_idx * lwe_dimension + lwe_sample_idx;

Torus state = buffer_in[val_idx];

Torus mod_b_mask = (1ll << base_log) - 1ll;

buffer_in[val_idx] = decompose_one<Torus>(state, mod_b_mask, base_log);
}

// Multiply matrices A, B of size (M, K), (K, N) respectively
// with K as the inner dimension.
//
// A block of threads processeds blocks of size (BLOCK_SIZE_GEMM,
// BLOCK_SIZE_GEMM) splitting them in multiple tiles: (BLOCK_SIZE_GEMM,
// THREADS_GEMM)-shaped tiles of values from A, and a (THREADS_GEMM,
// BLOCK_SIZE_GEMM)-shaped tiles of values from B.
template <typename Torus, typename TorusVec>
__global__ void tgemm(int M, int N, int K, const Torus *A, const Torus *B,
pdroalves marked this conversation as resolved.
Show resolved Hide resolved
int stride_B, Torus *C) {

const int BM = BLOCK_SIZE_GEMM;
const int BN = BLOCK_SIZE_GEMM;
const int BK = THREADS_GEMM;
const int TM = THREADS_GEMM;

const uint cRow = blockIdx.y;
const uint cCol = blockIdx.x;

const uint totalResultsBlocktile = BM * BN;
const int threadCol = threadIdx.x % BN;
const int threadRow = threadIdx.x / BN;

// Allocate space for the current block tile in shared memory
__shared__ Torus As[BM * BK];
__shared__ Torus Bs[BK * BN];

// Initialize the pointers to the input blocks from A, B
// Tiles from these blocks are loaded to shared memory
A += cRow * BM * K;
B += cCol * BN;

// Each thread will handle multiple sub-blocks
const uint innerColA = threadIdx.x % BK;
const uint innerRowA = threadIdx.x / BK;
const uint innerColB = threadIdx.x % BN;
const uint innerRowB = threadIdx.x / BN;

// allocate thread-local cache for results in registerfile
Torus threadResults[TM] = {0};

auto row_A = cRow * BM + innerRowA;
auto col_B = cCol * BN + innerColB;

// For each thread, loop over block tiles
for (uint bkIdx = 0; bkIdx < K; bkIdx += BK) {
auto col_A = bkIdx + innerColA;
auto row_B = bkIdx + innerRowB;

if (row_A < M && col_A < K) {
As[innerRowA * BK + innerColA] = A[innerRowA * K + innerColA];
} else {
As[innerRowA * BK + innerColA] = 0;
}

if (col_B < N && row_B < K) {
Bs[innerRowB * BN + innerColB] = B[innerRowB * stride_B + innerColB];
} else {
Bs[innerRowB * BN + innerColB] = 0;
}
__syncthreads();

// Advance blocktile for the next iteration of this loop
A += BK;
B += BK * stride_B;

// calculate per-thread results
for (uint dotIdx = 0; dotIdx < BK; ++dotIdx) {
// we make the dotproduct loop the outside loop, which facilitates
// reuse of the Bs entry, which we can cache in a tmp var.
Torus tmp = Bs[dotIdx * BN + threadCol];
for (uint resIdx = 0; resIdx < TM; ++resIdx) {
threadResults[resIdx] +=
As[(threadRow * TM + resIdx) * BK + dotIdx] * tmp;
}
}
__syncthreads();
}

// Initialize the pointer to the output block of size (BLOCK_SIZE_GEMM,
// BLOCK_SIZE_GEMM)
C += cRow * BM * N + cCol * BN;

// write out the results
for (uint resIdx = 0; resIdx < TM; ++resIdx) {
int outRow = cRow * BM + threadRow * TM + resIdx;
int outCol = cCol * BN + threadCol;

if (outRow >= M)
continue;
if (outCol >= N)
continue;

C[(threadRow * TM + resIdx) * N + threadCol] += threadResults[resIdx];
}
}

// Finish the keyswitching operation and prepare GLWEs for accumulation.
// 1. Finish the keyswitching computation partially performed with a GEMM:
// - negate the dot product between the GLWE and KSK polynomial
// - add the GLWE message for the N-th polynomial coeff in the message poly
// 2. Rotate each of the GLWE . KSK poly dot products to
// prepare them for accumulation into a single GLWE
template <typename Torus>
__global__ void polynomial_accumulate_monic_monomial_mul_many_neg_and_add_C(
Torus *in_glwe_buffer, Torus *out_glwe_buffer, Torus const *lwe_array,
uint32_t lwe_dimension, uint32_t num_glwes, uint32_t polynomial_size,
uint32_t glwe_dimension) {

uint32_t glwe_id = blockIdx.x * blockDim.x + threadIdx.x;
uint32_t degree = glwe_id; // lwe 0 rotate 0, lwe 1 rotate 1, .. , lwe
// poly_size-1 rotate poly_size-1
uint32_t coeffIdx = blockIdx.y * blockDim.y + threadIdx.y;

if (glwe_id >= num_glwes)
return;
if (coeffIdx >= polynomial_size)
return;

auto in_poly =
in_glwe_buffer + glwe_id * polynomial_size * (glwe_dimension + 1);
auto out_result =
out_glwe_buffer + glwe_id * polynomial_size * (glwe_dimension + 1);
if (coeffIdx == 0) {
// Add the message value of the input LWE (`C`) to the N-th coefficient
// in the GLWE . KSK dot product

// The C is added to the first position of the last polynomial in the GLWE
// which has (glwe_dimension+1) polynomials
// The C value is extracted as the last value of the LWE ct. (of index
// glwe_id) the LWEs have (polynomial_size + 1) values
in_poly[polynomial_size * glwe_dimension] =
lwe_array[glwe_id * (lwe_dimension + 1) + lwe_dimension] -
in_poly[polynomial_size * glwe_dimension];

for (int gi = 1; gi < glwe_dimension; ++gi)
in_poly[coeffIdx + gi * polynomial_size] =
-in_poly[coeffIdx + gi * polynomial_size];

} else {
// Otherwise simply negate the input coefficient
for (int gi = 1; gi < glwe_dimension + 1; ++gi)
in_poly[coeffIdx + gi * polynomial_size] =
-in_poly[coeffIdx + gi * polynomial_size];
}
// Negate all the coefficients for rotation for the first poly
in_poly[coeffIdx] = -in_poly[coeffIdx];

// rotate the body
polynomial_accumulate_monic_monomial_mul<Torus>(
out_result, in_poly, degree, coeffIdx, polynomial_size, 1, true);
// rotate the mask too
for (int gi = 1; gi < glwe_dimension + 1; ++gi)
polynomial_accumulate_monic_monomial_mul<Torus>(
out_result + gi * polynomial_size, in_poly + gi * polynomial_size,
degree, coeffIdx, polynomial_size, 1, true);
}

template <typename Torus, typename TorusVec>
__host__ void host_fast_packing_keyswitch_lwe_list_to_glwe(
cudaStream_t stream, uint32_t gpu_index, Torus *glwe_out,
Torus const *lwe_array_in, Torus const *fp_ksk_array, int8_t *fp_ks_buffer,
uint32_t lwe_dimension, uint32_t glwe_dimension, uint32_t polynomial_size,
uint32_t base_log, uint32_t level_count, uint32_t num_lwes) {

// Optimization of packing keyswitch when packing many LWEs

if (level_count > 1) {
PANIC("Fast path PKS only supports level_count==1");
pdroalves marked this conversation as resolved.
Show resolved Hide resolved
}

cudaSetDevice(gpu_index);
check_cuda_error(cudaGetLastError());

int glwe_accumulator_size = (glwe_dimension + 1) * polynomial_size;

// The fast path of PKS uses the scratch buffer (d_mem) differently than the
// old path: it needs to store the decomposed masks in the first half of this
// buffer and the keyswitched GLWEs in the second half of the buffer. Thus the
// scratch buffer for the fast path must determine the half-size of the
// scratch buffer as the max between the size of the GLWE and the size of the
// LWE-mask
int memory_unit = glwe_accumulator_size > lwe_dimension
? glwe_accumulator_size
: lwe_dimension;

// ping pong the buffer between successive calls
// split the buffer in two parts of this size
auto d_mem_0 = (Torus *)fp_ks_buffer;
auto d_mem_1 = d_mem_0 + num_lwes * memory_unit;

// Set the scratch buffer to 0 as it is used to accumulate
// decomposition temporary results
cuda_memset_async(d_mem_1, 0, num_lwes * memory_unit * sizeof(Torus), stream,
gpu_index);
check_cuda_error(cudaGetLastError());

// decompose LWEs
// don't decompose LWE body - the LWE has lwe_size + 1 elements. The last
// element, the body is ignored by rounding down the number of blocks assuming
// here that the LWE dimension is a multiple of the block size
dim3 grid_decomp(CEIL_DIV(num_lwes, BLOCK_SIZE_DECOMP),
CEIL_DIV(lwe_dimension, BLOCK_SIZE_DECOMP));
dim3 threads_decomp(BLOCK_SIZE_DECOMP, BLOCK_SIZE_DECOMP);

// decompose first level
decompose_vectorize_init<Torus, TorusVec>
<<<grid_decomp, threads_decomp, 0, stream>>>(lwe_array_in, d_mem_0,
lwe_dimension, num_lwes,
base_log, level_count);
check_cuda_error(cudaGetLastError());

// gemm to ks the individual LWEs to GLWEs
dim3 grid_gemm(CEIL_DIV(glwe_accumulator_size, BLOCK_SIZE_GEMM),
CEIL_DIV(num_lwes, BLOCK_SIZE_GEMM));
dim3 threads_gemm(BLOCK_SIZE_GEMM * THREADS_GEMM);

auto stride_KSK_buffer = glwe_accumulator_size;

uint32_t shared_mem_size = get_shared_mem_size_tgemm<Torus>();
tgemm<Torus, TorusVec><<<grid_gemm, threads_gemm, shared_mem_size, stream>>>(
num_lwes, glwe_accumulator_size, lwe_dimension, d_mem_0, fp_ksk_array,
stride_KSK_buffer, d_mem_1);
check_cuda_error(cudaGetLastError());

/*
TODO: transpose key to generalize to level_count > 1
pdroalves marked this conversation as resolved.
Show resolved Hide resolved

for (int li = 1; li < level_count; ++li) {
decompose_vectorize_step_inplace<Torus, TorusVec>
<<<grid_decomp, threads_decomp, 0, stream>>>(
d_mem_0, lwe_dimension, num_lwes, base_log, level_count);
check_cuda_error(cudaGetLastError());

tgemm<Torus, TorusVec><<<grid_gemm, threads_gemm, shared_mem_size,
stream>>>( num_lwes, glwe_accumulator_size, lwe_dimension, d_mem_0,
fp_ksk_array + li * ksk_block_size, stride_KSK_buffer, d_mem_1);
check_cuda_error(cudaGetLastError());
}
*/

// should we include the mask in the rotation ??
dim3 grid_rotate(CEIL_DIV(num_lwes, BLOCK_SIZE_DECOMP),
CEIL_DIV(polynomial_size, BLOCK_SIZE_DECOMP));
dim3 threads_rotate(BLOCK_SIZE_DECOMP, BLOCK_SIZE_DECOMP);
// rotate the GLWEs
polynomial_accumulate_monic_monomial_mul_many_neg_and_add_C<Torus>
<<<grid_rotate, threads_rotate, 0, stream>>>(
d_mem_1, d_mem_0, lwe_array_in, lwe_dimension, num_lwes,
polynomial_size, glwe_dimension);
check_cuda_error(cudaGetLastError());

dim3 grid_accumulate(
CEIL_DIV(polynomial_size * (glwe_dimension + 1), BLOCK_SIZE_DECOMP));
dim3 threads_accum(BLOCK_SIZE_DECOMP);

// accumulate to a single glwe
accumulate_glwes<Torus><<<grid_accumulate, threads_accum, 0, stream>>>(
glwe_out, d_mem_0, glwe_dimension, polynomial_size, num_lwes);

check_cuda_error(cudaGetLastError());
}

#endif
Loading
Loading