-
Notifications
You must be signed in to change notification settings - Fork 50
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
122 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,122 @@ | ||
# hello_milvus.py demonstrates the basic operations of PyMilvus, a Python SDK of Milvus. | ||
# 1. connect to Milvus | ||
# 2. create collection | ||
# 3. insert data | ||
# 4. create index | ||
# 5. search, query, and hybrid search on entities | ||
# 6. delete entities by PK | ||
# 7. drop collection | ||
import time | ||
import os | ||
import numpy as np | ||
from pymilvus import ( | ||
connections, | ||
utility, | ||
FieldSchema, CollectionSchema, DataType, | ||
Collection, | ||
) | ||
|
||
fmt = "\n=== {:30} ===\n" | ||
search_latency_fmt = "search latency = {:.4f}s" | ||
num_entities, dim = 3000, 8 | ||
|
||
################################################################################# | ||
# 1. connect to Milvus | ||
# Add a new connection alias `default` for Milvus server in `localhost:19530` | ||
# Actually the "default" alias is a buildin in PyMilvus. | ||
# If the address of Milvus is the same as `localhost:19530`, you can omit all | ||
# parameters and call the method as: `connections.connect()`. | ||
# | ||
# Note: the `using` parameter of the following methods is default to "default". | ||
print(fmt.format("start connecting to Milvus")) | ||
|
||
host = os.environ.get('MILVUS_HOST') | ||
if host == None: | ||
host = "localhost" | ||
print(fmt.format(f"Milvus host: {host}")) | ||
connections.connect("default", host=host, port="19530") | ||
|
||
has = utility.has_collection("hello_milvus") | ||
print(f"Does collection hello_milvus exist in Milvus: {has}") | ||
|
||
################################################################################# | ||
# 2. create collection | ||
# We're going to create a collection with 3 fields. | ||
# +-+------------+------------+------------------+------------------------------+ | ||
# | | field name | field type | other attributes | field description | | ||
# +-+------------+------------+------------------+------------------------------+ | ||
# |1| "pk" | Int64 | is_primary=True | "primary field" | | ||
# | | | | auto_id=False | | | ||
# +-+------------+------------+------------------+------------------------------+ | ||
# |2| "random" | Double | | "a double field" | | ||
# +-+------------+------------+------------------+------------------------------+ | ||
# |3|"embeddings"| FloatVector| dim=8 | "float vector with dim 8" | | ||
# +-+------------+------------+------------------+------------------------------+ | ||
fields = [ | ||
FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id=False), | ||
FieldSchema(name="random", dtype=DataType.DOUBLE), | ||
FieldSchema(name="var", dtype=DataType.VARCHAR, max_length=65535), | ||
FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim) | ||
] | ||
|
||
schema = CollectionSchema(fields, "hello_milvus") | ||
|
||
print(fmt.format("Create collection `hello_milvus`")) | ||
hello_milvus = Collection("hello_milvus", schema, consistency_level="Strong") | ||
|
||
################################################################################ | ||
# 3. insert data | ||
# We are going to insert 3000 rows of data into `hello_milvus` | ||
# Data to be inserted must be organized in fields. | ||
# | ||
# The insert() method returns: | ||
# - either automatically generated primary keys by Milvus if auto_id=True in the schema; | ||
# - or the existing primary key field from the entities if auto_id=False in the schema. | ||
|
||
print(fmt.format("Start inserting entities")) | ||
rng = np.random.default_rng(seed=19530) | ||
entities = [ | ||
# provide the pk field because `auto_id` is set to False | ||
[i for i in range(num_entities)], | ||
rng.random(num_entities).tolist(), # field random, only supports list | ||
[str(i) for i in range(num_entities)], | ||
rng.random((num_entities, dim)), # field embeddings, supports numpy.ndarray and list | ||
] | ||
|
||
insert_result = hello_milvus.insert(entities) | ||
hello_milvus.flush() | ||
print(f"Number of entities in hello_milvus: {hello_milvus.num_entities}") # check the num_entites | ||
|
||
# create another collection | ||
fields2 = [ | ||
FieldSchema(name="pk", dtype=DataType.INT64, is_primary=True, auto_id=True), | ||
FieldSchema(name="random", dtype=DataType.DOUBLE), | ||
FieldSchema(name="var", dtype=DataType.VARCHAR, max_length=65535), | ||
FieldSchema(name="embeddings", dtype=DataType.FLOAT_VECTOR, dim=dim) | ||
] | ||
|
||
schema2 = CollectionSchema(fields2, "hello_milvus2") | ||
|
||
print(fmt.format("Create collection `hello_milvus2`")) | ||
hello_milvus2 = Collection("hello_milvus2", schema2, consistency_level="Strong") | ||
|
||
entities2 = [ | ||
rng.random(num_entities).tolist(), # field random, only supports list | ||
[str(i) for i in range(num_entities)], | ||
rng.random((num_entities, dim)), # field embeddings, supports numpy.ndarray and list | ||
] | ||
|
||
insert_result2 = hello_milvus2.insert(entities2) | ||
hello_milvus2.flush() | ||
insert_result2 = hello_milvus2.insert(entities2) | ||
hello_milvus2.flush() | ||
|
||
index_params = {"index_type": "IVF_FLAT", "params": {"nlist": 128}, "metric_type": "L2"} | ||
hello_milvus.create_index("embeddings", index_params) | ||
|
||
hello_milvus2.create_index("embeddings", index_params) | ||
index_params2 = {"index_type": "Trie"} | ||
hello_milvus2.create_index("var", index_params2) | ||
|
||
print(f"Number of entities in hello_milvus2: {hello_milvus2.num_entities}") # check the num_entites | ||
|