Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add new CNN class for handling MNIST dataset and import it into main.py #82

Closed
wants to merge 9 commits into from
57 changes: 57 additions & 0 deletions src/cnn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim


class CNN(nn.Module):
"""
Convolutional Neural Network (CNN) class.
"""

def __init__(self):
"""
Initialize the CNN model.
"""
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
self.fc1 = nn.Linear(7 * 7 * 64, 128)
self.fc2 = nn.Linear(128, 10)

def forward(self, x):
"""
Forward pass of the CNN.
"""
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(x.size(0), -1)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x

def train(self, trainloader):
"""
Train the CNN model.
"""
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(self.parameters(), lr=0.01)

for _epoch in range(10): # loop over the dataset multiple times
for _i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = self(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()

return self

def save_model(self, path):
"""
Save the trained model.
"""
torch.save(self.state_dict(), path)
48 changes: 11 additions & 37 deletions src/main.py
Original file line number Diff line number Diff line change
@@ -1,48 +1,22 @@
from PIL import Image
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import numpy as np
from torchvision import datasets, transforms

from cnn import CNN

# Step 1: Load MNIST Data and Preprocess
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))
])
transform = transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]
)

trainset = datasets.MNIST('.', download=True, train=True, transform=transform)
trainset = datasets.MNIST(".", download=True, train=True, transform=transform)
trainloader = DataLoader(trainset, batch_size=64, shuffle=True)

# Step 2: Define the PyTorch Model
class Net(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(28 * 28, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 10)

def forward(self, x):
x = x.view(-1, 28 * 28)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = self.fc3(x)
return nn.functional.log_softmax(x, dim=1)
model = CNN()

# Step 3: Train the Model
model = Net()
optimizer = optim.SGD(model.parameters(), lr=0.01)
criterion = nn.NLLLoss()

# Training loop
epochs = 3
for epoch in range(epochs):
for images, labels in trainloader:
optimizer.zero_grad()
output = model(images)
loss = criterion(output, labels)
loss.backward()
optimizer.step()
model.train(trainloader)

torch.save(model.state_dict(), "mnist_model.pth")
# Save the trained model
model.save_model("mnist_model.pth")